

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-03-20T12:10:04Z

Some rights reserved. For more information, please see the item record link above.

Title Understanding Agility in Software Development through A
Complex Adaptive Systems Perspective

Author(s) Wang, Xiaofeng; Conboy, Kieran

Publication
Date 2009

Publication
Information

Wang, X. and K. Conboy (2009): "Understanding Agility in
Software Development through A Complex Adaptive Systems
Perspective", in the Proceedings of the 17th European
Conference on Information Systems, Verona, June 7-9.

Item record http://hdl.handle.net/10379/1638

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

UNDERSTANDING AGILITY IN SOFTWARE DEVELOPMENT

THROUGH A COMPLEX ADAPTIVE SYSTEMS PERSPECTIVE

Journal: 17th European Conference on Information Systems

Manuscript ID: ECIS2009-0561.R1

Submission Type: Research Paper

Keyword:
Information Systems Development (ISD), Complexity / Complex
adaptive systems, Agile computing, Case Study

17th European Conference on Information Systems

UNDERSTANDING AGILITY IN SOFTWARE DEVELOPMENT

FROM A COMPLEX ADAPTIVE SYSTEMS PERSPECTIVE

Xiaofeng Wang, Lero, the Irish Software Engineering Research Centre, Limerick, Ireland,

xiaofeng.wang@ul.ie

Kieran Conboy, National University of Ireland, Galway, Ireland,

kieran.conboy@nuigalway.ie

Abstract

Agile software development methods have emerged in recent years and have become increasingly

popular since the start of the century. While much research claims to study agile methods, the

meaning of agility itself in software development is yet to be fully understood. Agility is viewed by

some as the antithesis of plan, structure discipline and bureaucracy. This study aims to develop a

better understanding of agility, using the key concepts of Complex Adaptive Systems as a theoretical

lens. The study explores agility from several different angles, including autonomous team, stability

and uncertainty, and team learning. A multiple case study research method was employed. The

findings of the study emphasize that agility is manifested as stability and discipline, which are just as

desirable as flexibility, and context sharing is of the same value and importance as knowledge

sharing. In addition, the collective nature of learning is underlined.

Keywords: agility, complex adaptive systems, autonomy, stability, team learning

Page 2 of 13 17th European Conference on Information Systems

1 INTRODUCTION

The last ten years or so has seen the emergence of agile software development methods as a response

to the inefficiency of existing software development methods in rapidly changing environments

(Highsmith 2002), e.g. eXtreme Programming (XP) (Beck 1999) and Scrum (Schwaber & Beedle

2002). A brief reflection on the history of the agile software development movement, however, reveals

that agile methods originated as a set of techniques and practices, and the term agile is more a post-

rationalization to justify a set of existing “light-weight” methods. Agility in software development has

been interpreted in many different ways in practice. Skepticism and criticism of agile methods place

agility to the opposite of plan, structure and discipline which are generally considered the core

components of more traditional waterfall methods (Rakitin 2001, Stephens & Rosenberg 2003).

To clarify the meaning of agility, Conboy and Fitzgerald (2004) conduct a review of the literature on

agility across several disciplines including manufacturing, business and management, and carefully

distinguish several intertwined concepts, including flexibility and leanness. Based on the comparison

and contrast of these concepts, they provide a broad definition of agility as “the continual readiness of

an entity to rapidly or inherently, proactively or reactively, embrace change, through high quality,

simplistic, economical components and relationships with its environment” (Conboy & Fitzgerald

2004, p.40). Lyytinen and Rose (2006) explore agility in an information systems development (ISD)

context. They claim that ISD agility is concerned with why and how ISD organizations sense and

respond swiftly as they develop and maintain information system applications. They outline a theory

of ISD agility drawing upon a model of Information Technology (IT) innovation and organizational

learning which adopts March’s (1991) concepts of exploration and exploitation. Their empirical study

shows that the concept of ISD agility is more multifaceted and contextual than conceived so far in the

literature. It relates to being nimble in terms of the velocity to absorb base innovations and innovate

with IS products; the velocity to shift from one innovation regime to another (organizational

flexibility); the velocity to learn from experiences (trial and error learning); and the velocity to deliver

IS solutions. Each one of these demands different competencies and expects managerial shaping of

alternative organizational goals and incentives. Their findings suggest that the dynamics and

interactions between these four types of agility form different ecological niches. Each one follows a

different organizing logic. Managers must view the meaning of agility differently in each niche.

While these studies help to understand agility, and do highlight the lack of theoretical foundation

regarding agility in an ISD context, they do not address specifically how agility is manifested in

software development environments. Based on this observation, this study investigates the meaning of

agility in software development using the lenses of Complex Adaptive Systems (CAS), an important

branch of the complexity study which provides insights of how a system can be adaptive to its

environment. (Note that in the following sections the full phrase complex adaptive system is used to

refer to an instance of a complex system that demonstrates an adaptive nature, while CAS is used to

refer to the study and theory of such systems.) The empirical part of the study employs a multiple-case

study approach. The remaining part of the paper is organized as follows. Section 2 introduces the key

concepts of CAS and builds a conceptual framework based on CAS which guides the empirical

investigation; Section 3 describes the research method and the context of the empirical study; then the

findings are presented in Section 4 and discussed in Section 5. The paper ends up with a conclusion

section where the implications and limitations of the study are reviewed and the future work

summarized.

2 A COMPLEX ADAPTIVE SYSTEMS PERSPECTIVE ON AGILITY

A complex adaptive system, roughly defined, consists of a large number of agents, each of which

behaves according to some set of rules. These rules require agents to adjust their behaviour to that of

other agents. They interact with, and adapt to, each other. CAS seeks to identify common features of

Page 3 of 1317th European Conference on Information Systems

the dynamics of such systems or networks in general (Stacey 2003). There is no single and definitive

account of CAS. Anderson (1999), Mitleton-Kelly (2003) and Stacey (2003) provide valuable

introductions to CAS in the context of organization and management. Four key concepts of CAS in the

centre of these accounts are of particular relevance to this study: inter-connected autonomous agents,

self-organization, the edge of chaos and emergence. These key concepts provide a new perspective to

investigate different facets of agility as a desirable property for software development teams in

constantly changing environments.

The concepts of inter-connected autonomous agents and self-organization suggest that, to be agile, a

software development team should be composed of autonomous members who have their own

schemata, which generally refer to norms, values, beliefs, and assumptions that are held by individuals

(Senge 1990, Schein 1997). Team members are interconnected in such a way that a decision or action

by any individual may affect related individuals and the team. A team composed of autonomous but

inter-connected members can spontaneously come together to perform a task (or for some other

purpose); the team decides what to do, how and when to do it; and no one outside the group directs

those activities (Mitleton-Kelly 2003). To do so, a team needs energy imported into and constantly

flowing within it, which can be interpreted, partly, as the sharing of information, knowledge or other

resources needed to sustain self-organized activities.

The edge of chaos provides organizations “with sufficient stimulation and freedom to experiment and

adapt but also with sufficient frameworks and structure to ensure they avoid complete disorderly

disintegration” (McMillan 2004, p. 22). Brown and Eisenhardt (1998) contend that, to compete at the

edge, organizations must understand what to structure and what not to structure, to foster

communication and to capture cross-business synergies. The edge of chaos concept suggests that being

agile is neither chaotic nor static. It needs stability but not so much that order prevails and innovation

is stifled. It is a delicate balance of both.

The concept of emergence sheds new light on learning, which can be seen as a collective behavior of

creating new patterns of thought at the team level based on the interaction of individuals, instead of

often seen exclusively as the provision of individual training. Learning means not only training or the

acquisition of new skills, but also the gaining of insight and understanding which leads to new

knowledge and behavior. When learning leads to new behavior, the team can be said to have adapted

and evolved (Mitleton-Kelly 2003). An agile team facilitates team learning and generation of new

knowledge. In addition, new knowledge needs to be shared to generate further new learning,

knowledge and behavior.

In summary, this study investigates the meaning of agility from three facets: autonomous but sharing

team, stability with embraced uncertainty and team learning, as shown in Table 1.

Facets of Agility Underlying CAS Concepts Relevant Studies

Autonomous but sharing team Inter-connected autonomous agents

Self-organization

Anderson 1999; Choi et al. 2001 ;

Mitleton-Kelly 2003

Stability with embraced

uncertainty

The edge of chaos Brown and Eisenhardt 1998;

Stacey 2003

Team learning Emergence Mitleton-Kelly 2003; Stacey 2003

Table 1. Agility through the CAS perspective

3 RESEARCH APPROACH

This study adopts an interpretivist stance, emphasizing that agility are situational and can be better

understood through the understanding and sense making of people who are involved in software

development. In particular, this study employs a qualitative approach, treating agility as a qualitative

Page 4 of 13 17th European Conference on Information Systems

property of a software development team that can be better studied through words and the meanings

people ascribe to them rather than numbers or frequencies. The specific research method used in this

study is case study, which is an appropriate approach when a research phenomenon is investigated in

its real-live context (Yin 2003). A multiple-case design is employed. Given the research focus of the

study, the level of inquiry is at the team level, so it seems appropriate to take a software development

team as a case. The unit of analysis is the software development team. Three software development

teams - XPTeam A, XPTeam B and WaterfallTeam - from two different companies were chosen as the

cases. XPTeam A is a representative case; XPTeam B is a confirming case of the first one; and

WaterfallTeam is a contrasting case, following the strategy suggested by Yin (2003). The profiles of

the three cases are shown in Table 2. XPTeam A is a software development team in SecureSoft, a

small software house specialized in network security and management systems development. XPTeam

B and WaterfallTeam are software development teams in WorldTech, a major IT company providing

both IT projects and services.

 XPTeam A XPTeam B WaterfallTeam

Team size 4 8 5

Team composition 3 developers, 1 project

manager

6 developers, 1 test manager,

1 project manager

4 developers, 1 project

manager

Development method XP XP Waterfall style mixed with

some agile elements

Years of method use 4.5 - 5 years 11 months to 1.5 years More than 5 years

Location Co-located in an open

office space

Co-located in an semi-open

office space

Collocated in an semi-

open office space

Software developed Application for external

customer

Web application for internal

use

Backend application for

internal use

Table 2. The profiles of the three cases

Two rounds of data collection are conducted. The interval between the two rounds is six months. The

main data collection method used is semi-structured face-to-face interviews. The questions are all

open-ended. The members of each team are interviewed. Each interview lasts between 30 minutes to

two hours. In all the cases, most interviewees are interviewed twice. Table 3 lists the people

interviewed in each team. Documents regarding the development processes of the case teams are

collected when available. Some non-participative observations are conducted as the opportunities

occur. Field notes are taken during both rounds of data collection.

 XPTeam A XPTeam B WaterfallTeam

First round

interviews

1 group interview (with the 4 team

members below), 4 individual interviews

- Project manager

- Coach

- Developer A

- Developer B

5 individual interviews

- Project manager

- Team lead

- Tech lead

- Developer A

- Test manager

1 individual interview

- Project

manager

Second

round

interviews

2 group interviews (with the team

members below), 3 individual interviews
- Coach

- Developer A

- Developer B

6 individual interviews

- Project manager

- Team lead

- Tech lead

- Developer B

- Developer C

- Test manager

3 individual interviews

- Project

manager

- Developer A

- Developer B

Table 3. Two rounds of interviews

The data analysis includes two steps: within-case analysis and cross-case comparison (Eisenhardt

1989). The emphasis is on the cross-case comparison, in which an analysis tactic suggested by

Page 5 of 1317th European Conference on Information Systems

Eisenhardt (1989) is used: the three cases were divided into two groups, XPTeam A and XPTeam B in

one group as the cases using agile approach, while WaterfallTeam in the other group as the case that

uses waterfall approach. XPTeam A and B are compared firstly for similarities and differences, and

then they as a group are contrasted with WaterfallTeam for similarities and differences.

4 MANIFESTATION OF AGILITY IN THE THREE TEAMS

This section presents how agility has been manifested (or shown to be absent) in the three cases.

4.1 Autonomous but sharing team

Team autonomy in XPTeam A and B firstly is shown as competences relevant to software

development being distributed among team members. The members of the two teams are involved in

all development activities of their projects, and all have to deal with the customers, analyse user

requirements and write code together. There are no traditional roles such as system analyst, designer

or programmer. Each team member is able to assume all the roles, since comprehensive competences

are required to work with user stories, the implementation of which is self-contained and encapsulates

different development activities:

“The problem is not to have three persons for analysis, or two persons for design, but a user

story inside has to resolve analysis, developing, and, etc., everything.” (Project

manager/XPTeam A)

For example, when XPTeam B started the project, there were big gaps among team members in terms

of Java related knowledge and skills. With the project going on, the developers with less Java

experience learnt quickly from those more experienced, and the team members reached fairly the same

level of competence. As a result, there is no dependency on a particular individual, since each team

member gets exposure to different areas of a project. Distributed competence is shown in the case of

WaterfallTeam too, although the team uses waterfall approach. Like the other two teams, there are no

specific roles like analyst, designer or coder in the team. The developers are not specialized on specific

tasks. Everybody has chances to do different things.

Team autonomy is also manifested as a disciplined team in XPTeam A and B, which is seemingly

contradictory to the idea of autonomy. However, both teams reckon the importance of disciplines. As a

member of XPTeam B describes, disciplines are necessary components of an agile process, and they

come from the process the team uses:

“There is a set of rules really, and you may not adopt them, you probably adopt most of them,

and those rules kind of direct you really, it’s like you need to formalize it so you can be more

flexible.” (Test manager/XPTeam B)

Team autonomy does not mean the team members are working on their own; instead, there is constant

sharing among them. XPTeam A considers sharing an important aspect of team working. They believe

that, as a team, they have to face every moment in any case without barriers. Sharing is also seen as a

contributor to a team’s agility by WaterfallTeam who works with the waterfall approach. The

difference is that sharing in the two teams using agile processes goes beyond simply knowledge

sharing. It extends to context sharing and the sharing of achieved results. What is shared among the

team members is not only the technical knowledge related to different areas of a project, which helps

to distribute competences among them. It is also the knowledge about who knows what, which is

particularly important for a bigger team like XPTeam B, and helps the team members self-organize to

implement tasks:

“I think the ten o'clock stand-up meeting is definitely good, because you know what everybody

else on the project is working on, and you might say ‘I'm working on this and I'm not sure how

to’… and someone says ‘oh yeah actually I did it yesterday’.” (Developer B/XPTeam B)

Page 6 of 13 17th European Conference on Information Systems

In XPTeam A and B, the developers are attentive to what happens around them, with the help of the

open space the teams are working in:

“When you are doing something, you have to listen what the pair, or the single one if you are in

pair, what he's doing, what they are saying, you have one ear in this way and the other (in the

other way).” (Developer A/XPTeam A)

Collective ownership of results is another kind of sharing. The two teams using the agile processes

both endorse the collective ownership of code, as suggested by XP. A developer of XPTeam B,

however, warns that collective ownership can become collective irresponsibility sometimes, which

means no one claims to be responsible if there is some problem with a piece of code. In the case of

XPTeam A, in addition to collective ownership of code, the team also owns collectively other forms of

working results, such as designs, solutions, etc., which helps the team to have a sense of common

achievement.

4.2 Stability with embraced uncertainty

Stability for software development is a desired property by all three teams, which is seen as an

indispensable component in responding to change:

“There has to be some limitation of what you are doing, you cannot be so flexible that things

are chopping and changing every single day.” (Test manager/XPTeam B)

Stability first of all is demonstrated as a short-term certainty in all the three teams. The short-term

certainty means a team has a very clear idea of what they have to do in a short time frame, such as

one-week or two-week iterations in the cases of XPTeam A and B. WaterfallTeam also realizes the

importance of the short-term certainty to deal with constant changes from the management:

“Well I guess in terms of uncertainty, you don't know really tomorrow you are going to work on

the same project, so on a phased approach you can complete one phase and then this is done.

And say after tomorrow, let's say the next phase is cancelled because of the management

decision, then you still have a product that works.” (Developer A/WaterfallTeam)

In the cases of XPTeam A and B, stability is also shown as a sense of frequent achievement and

satisfaction. The two XP teams realize that, with their agile process, the team members can be

motivated more easily than with the waterfall method, since the developers can see the result of their

work at the end of each iteration, rather than working for six months without anyone has ever seen or

used the code produced as what can happen in traditional processes. There is evidence to suggest that

the developers of WaterfallTeam also recognize the importance of motivating people, and believe that

a satisfied and motivated team is a source preventing a project from falling apart:

“If someone is not happy with what he's doing, he's not going to do his job well. If he doesn't

like it, he doesn't like to co-operate, if he's not happy with people, he wasn't going too far… So

the main thing is with people, keep them happy… because if people are unhappy, the project

falls apart.” (Developer A/WaterfallTeam)

In addition, a team focused on working is also a sign of stability. A focused team has several meanings

in the two XP teams: one meaning is to focus on work in a short but appropriate amount of time. It can

be an iteration, as in XPTeam A and B. Another meaning of being focused is to focus on current work,

not wasting time to do future-proof work, which has been emphasized particularly in XPTeam B. The

third meaning is to focus on development activities and not to mix them with personal desires of

learning new things. For example, XPTeam A is very attentive of keeping the team focused on

development activities by reserving daily studying time to satisfy the developers’ desires to learn.

Last but not least, stability shows as team working at a sustainable pace, with ease and without

anxiety, is another aspect of the stability for development. A developer of XPTeam A associates this

working state with agility directly:

Page 7 of 1317th European Conference on Information Systems

“I think agility is a state of mind… you don't have to feel anxiety, you have to be relaxed when

you approach a problem, and XP or Scrum is just a method to obtain this kind of relaxity… If

you are happy on what you are doing, if you are not stressed, I think you can say you are

agile.” (Developer B/XPTeam A)

Stability co-exists with uncertainty which is unavoidable in the teams using agile methods.

Uncertainty needs to be embraced. Embraced uncertainty is manifested firstly as the probability to

change directions in the cases. All the teams believe that the iterative nature of their processes gives

them more possibility to change directions when needed, including WaterfallTeam, since they use

iterative phases within the waterfall process. But the probability to change should be complemented by

having a whole picture of the project, which has been emphasized in the two XP teams. XPTeam B

observes that having a whole picture of the project occurs not only to the developers, but also to their

onsite customer.

4.3 Team learning

XPTeam A understands that learning means doing things differently. If a team wants to be adaptive

and evolve, they have to learn. In the two XP teams, learning happens as team learning rather than

individual learning, which means a team as a whole acquires new knowledge and competences, and

the results of learning are shared among team members. Compared with WaterfallTeam, team learning

happens continuously and mutually, through using agile practices in the two XP teams. It happens in

daily development activities. It is a continuous experience for the team members. Meantime, since

learning happens through interactions among the developers, it is generally bi-directional. A developer

of XPTeam B comments:

“I think it (XP) is a very good way of learning as well, because with pair programming which is

part of it, you are learning from somebody different every day, and likewise you're able to teach

somebody else for you’ve been doing the day before … it gives a sense of shared, the project is

shared… There's more, definitely more knowledge been shared.” (Developer C/XPTeam B)

Besides, learning is not a daunting experience due to the fact that the teams using the agile processes

generally work on small pieces of tasks. The developers learn gradually through implementing them,

sometimes with the help of others. The team lead of XPTeam B observes that:

“Because it is down to granular level, it's easier to put better workload over people and also

easier for people to get involved, it’s also easier for people who don't have skill learn gradually

on the smaller story rather than having to develop something big on their own, so I think it's

easier to get a higher level skill without being overly complicated… They are not huge chunk of

piece to take on.” (Team lead/XPTeam B)

 Due to these attributes, team learning is seen more efficient than individual learning:

“The learning, when we do pair programming it's more efficient. In one year I learn a lot of

things that I didn't think (I could do) when I was in the university.” (Developer B/XPTeam A)

Table 4 summaries the findings.

5 DISCUSSION

As shown in this study, agility in the context of software development is highly multifaceted and

ambiguous. In this section the different facets of agility demonstrated in the cases are discussed by

drawing on relevant agile literature.

5.1 An autonomous but sharing team

Despite the suggestion by advocates of agile that software development processes should be organized

to improve and distribute both technical and social competences continuously (Cockburn & Highsmith

Page 8 of 13 17th European Conference on Information Systems

2001), few empirical studies in agile research have supported this stance. Only Auvinen et al. (2006)

highlight an increased competency in a team where several agile practices are piloted. Similarly, no

empirical research in the reviewed literature focused on discipline in agile processes despite the

emphasis many agilists place on its importance (e.g. Beck & Boehm 2003).

Agility through CAS Manifested in software development

Distributed competences

Disciplined team

Knowledge sharing

Context sharing

Autonomous but sharing

team

Collective ownership of results

Short-term certainty

Team being satisfied, motivated and focused

Working at a sustainable pace

Probability to change directions

Stability with embraced

uncertainty

Having a whole picture of the project

Learning continuously

Mutual learning

Team learning

Learning gradually

Table 4. Manifestation of agility in software development

This study suggests that a team composed of autonomous but interacting developers has a tendency to

be agile. Each of them is able to solve various development issues and to interact with customers.

Competences are not concentrated on few people so that there is no bottleneck in the development

process. Team members are confident and courageous in the interactions with customers and with

each other. They are also mature and willing to try new things. An autonomous team, however, does

not mean team members can be completely amethodical and ill-disciplined. On the opposite, it is

composed of disciplined, self-responsible and committed individuals. Discipline is an essential

component of an autonomous team, and is drawn from the interactions among peer team members.

Sharing is a common theme investigated in several agile studies, though most are focused on

knowledge sharing (Fredrick 2003, Melnik & Maurer 2004, Poole & Huisman 2001, Schatz &

Abdelshafi 2005). Context sharing has also been observed, but is somewhat understated in agile

literature. Melnik and Maurer (2004) believe that the so-called “background knowledge” about a

project is important to achieve effective communication. It is important for all team members to have a

common frame of reference - a common basis of understanding. Poole and Huisman (2001) observe

that, in the organisation they studied, there was a measurable increase in the visibility of what

everyone was doing on the team subsequent to the adoption of the agile practices. In fact, this

improvement in visibility is considered one of the greatest successes the company has achieved. In

terms of results sharing, Fredrick (2003) reports the experience of collective ownership of codes.

When it is realized, even the most complex business problems can be easily figured out. In contrast, it

was found that individual ownership of code made people defensive - people took it personally when

someone suggested their code did not work. Schatz and Abdelshafi (2005) also document the

collective ownership in their experience report where developers took ownership of the features they

created and took pride in showing their work to the stakeholders during sprint reviews. Rising and

Janoff (2000) notice that in a team they have studied, at every meeting, as small tasks were completed

and the team could see progress toward the goal, everyone was more satisfied with their work and

project progress.

The findings of this study confirm that sharing in an agile team not only means knowledge sharing.

Context sharing is equally important. To effectively self-manage, a team needs to share the

understanding of their working context. Context sharing is a precondition to provide effective

feedback, interpret them in a sensible way, and take appropriate actions. Sharing also means results

Page 9 of 1317th European Conference on Information Systems

sharing, such as collective ownership of code and solutions, which reduces the risk of knowledge loss

and increases the sense of being a true team.

Another type of sharing, namely problems sharing, is reported by Rising and Janoff (2000) but does

not emerge in this study. In the team they have studied, when one team member raises an obstacle in

the Scrum meeting, the entire team’s resources come together to bear on that problem, and the entire

team immediately owns any one individual’s problems.

5.2 Stability with embraced uncertainty

Several agile studies have noticed team satisfaction and motivation in agile processes (e.g. Rising &

Janoff 2000, Poole & Huisman 2001, Drobka et al. 2004). For example, Drobka et al. (2004) conduct a

survey of a team using XP and find that it creates a surge in morale since XP provides constant

feedback to the developers and at the end of each day the team has a working product. Team members

gain a sense of accomplishment from their daily work, because they immediately see the positive

impact their efforts have on the project. When morale is high, people are excited about their work,

leading to a more effective, efficient development team. Short-term certainty has also been noticed in

agile studies, though not so extensively. Murru et al. (2003) claim that XP enhances programmers’

sense of project control. They find that programmers with the experience of Rational Unified Process

(RUP) felt that XP’s planning game gave them a stronger feeling of control than traditional planning

did. They knew where their project was going and whether it was delayed. Furthermore, programmers

were more aware of keeping the project’s strategic goals in focus. This knowledge improved the

programmers’ motivation.

The role played by uncertainty is acknowledged by agile advocates (Highsmith & Cockburn 2001,

Williams and Cockburn 2003). Williams and Cockburn (2003) believe that uncertainty is inevitable in

all software development. Many changes occur during the time that the team is developing the

product. It is highly unlikely that any set of predefined steps will lead to a desirable, predictable

outcome. It is necessitated short “inspect-and-adapt” cycles and frequent, short feedback loops. Agile

software development is about change and feedback. Highsmith and Cockburn (2001) claim that agile

organizations and managers understand that to demand certainty in the face of uncertainty is

dysfunctional, and agile practices encourage change rather than discourage it. In turbulent business

situations, the change tolerance of a development process must be geared to the change rate of a

specific environment, not some internal view of how much change is acceptable. Despite these claims

of agile proponents, however, few empirical studies of agile processes have focused on uncertainty

and how it is embraced, with the exception of Elssamadisy and Schalliol (2002) who suggest that,

when using the XP practices, especially the simple design, one should look ahead and do things

incrementally, in order to have a big picture.

This study emphasizes stability as a desired property of development teams that have to deal with

continuous changes due to close relationships with customers and evolving requirements. A team

needs stability, needs to find a proper heartbeat for their development process so that it would not be

dissolved into turbulence. Stability gives developers a sense of security and control over what they are

working on. It can be drawn from a short-term certainty provided by a time-boxed development

process. Stability for development also means a team is working at a sustainable pace, focused and

motivated, working with ease and satisfaction. Certainty and security is only for a short term,

however. Uncertainty is inevitable in software development. It comes from both the environment a

team is embedded in and the development process itself. Managing uncertainty does not mean to

predict what is going to happen and do future proof work today. It is to ensure the probability to

change the direction a team goes towards but meantime not to get short-sighted. Team members need

to have a whole picture of the project in mind.

Page 10 of 13 17th European Conference on Information Systems

5.3 Team learning

Learning is a common theme explored in much agile research (e.g. Dingsoyr & Hanssen 2002, Drobka

et al. 2004, Hunt & Thomas 2003, Meso & Jain 2006), but the focus is mainly on individual rather

than team learning. In a survey conducted by Drobka et al. (2004), it was found that XP can reduce the

learning curve for new team members. Fifty-five percent of the developers believed that using XP

shortened their initial project-learning curve. Hunt and Thomas (2003) emphasize that learning in an

agile process is a continuous process, and it means learning about more than just the technology

involved. It covers how the team works together (or how it doesn’t) and team members themselves,

which leads to behavior and mental model change.

Learning means doing things differently. One important consequence of learning for an individual and

a team is to change either their behavior or mental model. It is a prerequisite for organizational

evolution and co-evolution (Mitleton-Kelly 2003). This study suggests that team learning is different

than individual learning, though closely related and dependent on it. From the CAS perspective, team

learning is emergent from the interactions of team members. Team learning is a collective result,

which means a team as a whole acquires new knowledge and competences, and results of individual

learning are shared among team members. In an agile team, team learning happens constantly,

mutually and gradually.

6 CONCLUSION

This study investigates how agility is manifested in agile software development through studying the

software development processes of three teams, two using XP, one using waterfall approach. Taking

the key concepts of CAS as theoretical lenses, the study explores the true meaning of being agile from

several different angles, including autonomous team, stability and uncertainty, and team learning.

Compared with the existing agile literature, the findings emphasize that stability and discipline are as

desirable as flexibility, and context sharing is of the same value and importance as knowledge sharing

in agile processes. In addition, the collective nature of learning is underlined. The main theoretical

contribution of the study is the understanding of agility in software development which is both theory-

informed and empirically grounded. Drawn on CAS, the study lifts the understanding beyond the

advocational literature found in agile field (Baskerville & Pries-Heje 2004). The discovered agile

properties enrich the understanding of agility in software development. The practical implication of

the study is that the findings indicate the desired effects of using agile methods. The agile properties

provide a software development team with observable agile indicators from different facets of

software development.

One limitation of the study comes from using CAS as the theoretical basis of the study. CAS has

originated in natural sciences. There is a deeper concern whether CAS is appropriate to the study of

human organizations. A combination of CAS theory with appropriate social theories might be a

promising avenue for future research. Some limitations are associated with the case study research

approach. One concern is the uniqueness of corporate, team and project characteristics of each case

which makes valid comparison and theoretical generalization of the case study results difficult

(Kitchenham et al. 2002). Specific to this study, an affecting factor is the diversity of the team profiles

(as shown in Table 2). To increase the validity of the study, the contextual information of the cases has

been taken into account in the data analysis. Another limitation is that only one agile method, XP, has

been involved in our case studies. Future work would be to verify if the findings apply to teams using

other agile methods, such as Scrum, Lean system development, etc.

References

Anderson, P. (1999). Complexity Theory and Organization Science. Organization Science, 10(3), 216-

232.

Page 11 of 1317th European Conference on Information Systems

Auvinen, J., R. Back, J. Heidenberg, P. Hirkman and L. Milovanov (2006). Software process

improvement with agile practices in a large telecom company. In Proceedings of Product-Focused

Software Process Improvement, Springer-Verlag, Berlin, LNCS 4034, 79-93.

Baskerville, R. and J. Pries-Heje (2004). Short cycle time systems development. Information Systems

Journal, 14(3), 237-264.

Beck, K. and B. Boehm (2003). Agility through discipline: a debate. Computer, 36(6), 44-46.

Beck, K. (1999). Extreme Programming Explained. Addison Wesley, Reading, MA.

Brown, S. and K. Eisenhardt (1998). Competing on the Edge: Strategy as Structured Chaos. Harvard

Business School Press, Boston.

Choi, T. Y., K. J. Dooley and M. Rungtusanatham (2001). Supply Networks and Complex Adaptive

Systems: Control versus Emergence. Journal of Operations Management, 19(3), 351-366.

Cockburn, A. and J. Highsmith (2001). Agile Software Development: The People Factor. Computer,

34(11), 131-133.

Conboy, K. and B. Fitzgerald (2004). Toward a Conceptual Framework of Agile Methods. In

Proceedings of Extreme Programming and Agile Methods - XP/ Agile Universe 2004, Springer-

Verlag, Berlin.

Dingsoyr, T. and G. K. Hanssen (2002). Extending agile methods: Postmortem reviews as extended

feedback. Advances in Learning Software Organizations, Springer-Verlag, Berlin. LNCS 2640, 4-

12.

Drobka, J., D. Noftz and R. Raghu (2004). Piloting XP on Four Mission-Critical Projects. IEEE

Software, 21(6), 70-75.

Eisenhardt, K. M. (1989). Building Theories from Case Study Research. Academy of Management

Review, 14(4), 532-550.

Elssamadisy, A. and G. Schalliol (2002). Recognizing and Responding to “Bad Smells” in Extreme

Programming. In Proceedings of the 24th International Conference On Software Engineering.

Association Computing Machinery, New York, 617-622.

Fredrick, C. (2003). Extreme Programming: Growing a Team Horizontally, Extreme Programming

and Agile Methods - XP/Agile Universe 2003. Springer-Verlag, Berlin. LNCS 2753, 9-17.

Highsmith, J. and A. Cockburn (2001). Agile Software Development: the Business of Innovation.

IEEE Computer, 34(9), 120-122.

Highsmith, J. (2002). Agile Software Development Ecosystems. Addison-Wesley, Boston.

Hunt, A. and D. Thomas (2003). Preparing the Raw Material. IEEE Software, 20(5), 97-98.

Kitchenham, B., S. L. Pfleeger, L. Pickard, P. Jones, D. C. Hoaglin, K. E. Emam and J. Rosenberg

(2002). Preliminary Guidelines for Empirical Research in Software Engineering. IEEE Transaction

on Software Engineering, 28(8), 721-734.

Lyytinen, K. and G. M. Rose (2006). Information System Development Agility as Organizational

Learning. European Journal of Information Systems, 15(2), 183-199.

March, J. G. (1991). Exploration and Exploitation in Organizational Learning. Organization Science,

2(1), 71-87.

McMillan, E. (2004). Complexity, Organizations and Change. Routledge, Taylor & Francis Group,

London.

Melnik, G. and F. Maurer (2004). Direct Verbal Communication as a Catalyst of Agile Knowledge

Sharing. In Proceedings of the Agile Development Conference. IEEE Computer Soc, Los Alamitos,

21-31.

Meso, P. and R. Jain (2006). Agile Software Development: Adaptive Systems Principles and Best

Practices. Information Systems Management, 23(3), 19-30.

Miles, M. B. and A. M. Huberman (1994). Qualitative Data Analysis: an Expanded Sourcebook. Sage,

Thousand Oaks, California.

Mitleton-Kelly, E. (2003). Ten Principles of Complexity & Enabling Infrastructures. In E. Mitleton-

Kelly (Ed.) Complex Systems & Evolutionary Perspectives of Organisations: The Application of

Complexity Theory to Organisations. Elsevier, Pergamon.

Murru, O., R. Deias and G. Mugheddu (2003). Assessing XP at a European Internet Company. IEEE

Software, 20(3), 37-43.

Page 12 of 13 17th European Conference on Information Systems

Poole, C. and J. Huisman (2001). Using Extreme Programming in a Maintenance Environment. IEEE

Software, 18(6), 42-50.

Rakitin, S. (2001). Manifesto Elicits Cynicism. IEEE Computer, 34(12), p. 4.

Rising, L. and N. S. Janoff (2000). The Scrum Software Development Process for Small Teams. IEEE

Software, 17(4), 26-32.

Schatz, B. and I. Abdelshafi (2005). Primavera Gets Agile: a Successful Transition to Agile

Development. IEEE Software, 22(3), 36-41.

Schein, E. (1997). Organizational Culture and Leadership. Jossey-Bass, San Francisco.

Schwaber, K and A. Beedle (2002). Agile Software Development with SCRUM. Prentice-Hall, Upper

Saddle River, NJ.

Senge, P. M. (1990). The Leader’s New Work: Building Learning Organizations. Sloan Management

Review, 32(1), 7-23.

Stacey, R. D. (2003). Strategic Management and Organisational Dynamics: The Challenge of

Complexity. Fourth Edition. Financial Times, Prentice Hall.

Stephens, M. and D. Rosenberg (2003). Extreme Programming Refactored: The Case Against XP.

Apress, New York.

Walsham, G. (1995). Interpretive Case Studies in IS Research: Nature and Method. European Journal

of Information Systems, 4(2), 74-81.

Williams, L. and A. Cockburn (2003). Agile Software Development: it's About Feedback and Change.

IEEE Computer, 36(6), 83-85.

Yin, R. K. (2003). Case Study Research: Design and Methods. Sage, Thousand Oaks, California.

Page 13 of 1317th European Conference on Information Systems

