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SUMMARY

Parkinson’s disease (PD) exhibits systemic effects on
thehumanmetabolism,withemerging roles for thegut
microbiome. Here, we integrate longitudinal metabo-
lome data from 30 drug-naive, de novo PD patients
and 30 matched controls with constraint-based
modeling of gut microbial communities derived from
an independent, drug-naive PD cohort, and prospec-
tive data from the general population. Our key results
are (1) longitudinal trajectory of metabolites associ-
ated with the interconversion of methionine and
cysteine via cystathionine differed between PD pa-
tients and controls; (2) dopaminergic medication
showedstrong lipidomicsignatures; (3) taurine-conju-
gated bile acids correlated with the severity of motor
symptoms, while low levels of sulfated taurolithocho-
late were associated with PD incidence in the general
population; and (4) computationalmodelingpredicted
changes insulfurmetabolism,drivenbyA.muciniphila
and B. wadsworthia, which is consistent with the
changedmetabolome.Themulti-omics integration re-
veals PD-specific patterns inmicrobial-host sulfur co-
metabolism that may contribute to PD severity.

INTRODUCTION

Parkinson’s disease (PD) is a complex neurodegenerative dis-

ease with diverse underlying etiological paths and systemic con-

sequences for patients’ physiology and metabolism (Kalia and

Lang, 2015). Cumulative evidence suggests a contribution of

peripheral metabolic factors, such as gut microbiome changes

(Bedarf et al., 2017; Heintz-Buschart et al., 2018; Scheperjans

et al., 2015), metabolic alterations (Havelund et al., 2017), and

peripheral inflammation (Qin et al., 2016) to disease risk and pro-

gression (Mule and Singh, 2018; Sampson et al., 2016). Their

causal role in the progression of the disease remains largely un-

known, partly due to a lack of longitudinal human omics data.

Such data could facilitate the investigation of the underlying

disease dynamics, while controlling for important confounding

factors, such as changes in drug regimens.

The contribution of PD-related microbiome changes to hu-

man metabolism in PD remains unknown. To integrate human

metabolomic data with microbial abundance data, computa-

tional modeling approaches are required. The Constraint-

Based Reconstruction and Analysis (COBRA) method is a

pertinent computational modeling approach, already success-

fully used in various biomedical challenges (Aurich and Thiele,

2016). Condition-specific metabolic models can be derived

through the application of condition-specific constraints,

such as omics data (Yizhak et al., 2010) Capitalizing on meta-

bolic reconstructions of hundreds of gut microbes (Magnús-

dóttir et al., 2017), metagenomics data have been used to pre-

dict metabolic outputs of microbial community (Baldini et al.,

2019; Heinken et al., 2017), which can be integrated with me-

tabolomic data.

In this study, we first set out to determine PD-associated

metabolic changes and disease progression by analyzing the

plasma metabolome of 30 PD patients and 30 algorithmically

matched controls at 3 time points. Second, we aimed at identi-

fying the potential microbial contribution to the observed meta-

bolic changes in PD at baseline. Therefore, we re-analyzed

Cell Reports 29, 1767–1777, November 12, 2019 ª 2019 The Authors. 1767
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:ines.thiele@nuigalway.ie
https://doi.org/10.1016/j.celrep.2019.10.035
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2019.10.035&domain=pdf
http://creativecommons.org/licenses/by/4.0/


published metagenomic data from an independent PD cohort

(Bedarf et al., 2017) consisting of 31 drug-naive PD patients

and 28 age-matched controls using constraint-based metabolic

modeling. With our analyses, we revealed PD-specific interac-

tions of host-microbial metabolic activity on sulfur metabolism

with relevance for the severity of motor symptoms.

RESULTS AND DISCUSSION

We obtained EDTA-plasma samples taken from the well-defined

longitudinal DeNoPa cohort of initially drug-naive PD patients

(n = 30) and matched healthy controls (n = 30; Table S1), each

followed for 4 years, with samples taken every 2 years (Mollenha-

uer et al., 2013, 2016). Both groups remained comparable in

basic physiological traits over time, such as BMI, basic blood in-

dicators of kidney function, serum g-glutamyl-transferase levels,

and lipid status, while PD-related traits changed over time in the

PD group (Tables S1 and S2).

Using a targetedmetabolomic analysis, wemeasured 271me-

tabolites (Figure 1C), which were selected based on biomarkers

and pathways implicated in neurodegeneration and PD (e.g., Fu-

jita et al., 2014). Of those, 141 (52%) could be mapped onto hu-

man (Brunk et al., 2018) and gut microbial metabolic reconstruc-

tions (Magnúsdóttir et al., 2017) hosted in the Virtual Metabolic

Human (VMH) database (Noronha et al., 2018) (Figure 1A). The

remaining 130 unmapped metabolites were mostly lipids.

The Levodopa-Degradation Product, 3-O-Methyldopa,
Allows for Levodopa Intake Classification
We first investigated 3-O-methyldopa (3-OMD), the main catab-

olite of levodopa (M€uller et al., 2002). According to self-reports,

16/30 cases took levodopa at follow up I and 24/29 cases at

follow-up II (Table S1). The 3-OMD levels enabled the perfect

classification of self-reported levodopa intake in follow-up as-

sessments (area under the curve [AUC] = 1.00), making 3-OMD

a useful marker for levodopa intake.

Figure 1. Overview over Metabolomic Analyses and 3-O-Methyldopamine Levels in Dependency on Levodopa Intake

(A) Venn diagram represents the measured metabolites mapped onto the Virtual Metabolic Human database (www.vhm.life; Noronha et al., 2018) hosting the

human metabolic reconstruction (Brunk et al., 2018), 818 microbial metabolic reconstructions (Magnúsdóttir et al., 2017), and the composition of >8,000

foodstuffs.

(B) Levodopa intake (self-report) and 3-O-methyldopamine levels.

(C) Overview of significant findings for biochemical classes for each line of analyses are shown.
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The Longitudinal Metabolomic Data Reveal PD-Specific
Trajectories
To identify time-dependent metabolites, we first analyzed the

metabolome data separately for cases and controls. Only 5 me-

tabolites changed over time in controls (Data S1). In contrast, 21

metabolites showed time dependency in PD after correction for

multiple testing using the false discovery rate (FDR) (Benjamini,

2010), suggesting PD-specific dynamics in the plasma metabo-

lome (Figure 1C) (Data S1). Testing trajectories of controls and

PD cases directly against one another, we identified 3 types of

PD-specific trajectories for 13 metabolites, which remained sig-

nificant after correcting for multiple testing (Figure S1; see

Method Details). Nine of these were also significantly different

at baseline (Figure S1). The type 1 trajectory, only shown by ho-

moserine, displayed constant levels in controls and increased

concentrations in all 3 waves in PD. The type 2 trajectory (dis-

played by 3-OMDand cystathionine) had comparablemetabolite

levels at baseline between cases and controls, but increased

over time in PD. Finally, the type 3 trajectory was defined by

higher levels at baseline, compared to the controls, and

decreased concentrations in PD in the follow-ups with no trend

observed in the controls. The type 3 trajectory was found for 5

amino acids (methionine, serine, phenylalanine, leucine, and

asparagine), 3 long-chain fatty acids (FA) (FA C14:0, FA C17:1,

and FA C20:1), and the organic acids 3-hydroxyisobutyrate

and a-aminobutyrate. Using principal-component analysis

(PCA) of the type 3 metabolites, we found that the first PC dis-

played high loadings for all of the amines, while the second PC

was primarily composed of the 3 long-chain FAs (Figure S1B).

We conclude that the changes in amine metabolism were inde-

pendent from those in lipid metabolism, despite having the

same pattern over time (Figure S1A). All of the associations re-

mained significant, except for 3-OMD and asparagine, when ad-

justing for medication (Data S1; Table S2).

The Transsulfuration Pathway Is Altered in PD at
Baseline and in Disease Progression
All of the measured compounds within the transsulfuration

pathway, except for cysteine, changed in concentration over

time in PD with at least nominal significance (Figures 2A, 2B,

and 2D).With homoserine, methionine, serine, and a-aminobuty-

rate being increased in PD compared to controls (Figure S1C),

the PD-related effects were already prevalent at baseline. The

transsulfuration compounds, however, belonged to different

trajectory types. One possible explanation for these results is

that metabolite-metabolite relations changed during PD pro-

gression. Thus, we investigated the statistical relations between

homoserine (type 1 trajectory) and its downstream metabolite

methionine (type 3 trajectory) in PD and controls over time.

While methionine and homoserine were positively correlated

in cases and controls, the controls had significantly higher

regression coefficients than the PD patients (interaction effect

[IE]: b = �0.36, 95% confidence interval [CI]: �0.66 to �0.06,

p = 0.014; Figure 2C). Homoserine is not produced by human

metabolism and is, for example, an intermediate of the microbial

pathway generating methionine from aspartate. Hence, the gut

microbiome may also contribute to human methionine plasma

levels. Accordingly, it has been shown that probiotics could

mitigate the effects of methionine depletion in mice on a choline-

and methionine-deficient diet (Ye et al., 2018). Notably, both

metabolites were statistically uncoupled in PD in follow-up II,

but not in the controls (Figure 2C). Given the pivotal role of oxida-

tive stress in PD (Singh et al., 2019), a higher flux toward trans-

sulfuration to generate the antioxidant glutathione may explain

both the decreasing methionine levels and the smaller variance

contribution of homoserine to the methionine levels in follow-up.

In line with the hypothesis of a higher flux toward transsulfura-

tion, cystathionine accumulated over time in PD patients. How-

ever, cysteine levels were unchanged over time, indicating that

the conversion of cystathionine to cysteine, via the enzyme

cystathionine-g-lyase, may be blocked by a capacity limitation

(e.g., saturated kinetics). Both metabolites were negatively

correlated in PD in the follow-up assessments (Figure 2C), while

a slightly positive correlation was observed in controls (Fig-

ure 2C). The corresponding IE was significant with and without

adjusting for medication, displaying a stronger effect size with

adjustment for levodopa dosage (b = �0.14, 95% CI: �0.25

to �0.04, p = 0.005). Accordingly, we observed changes in the

dependencies between cystathionine and the downstream

products of cystathionine degradation, 2-hydroxybutyrate (IE

b = �0.33, 95% CI: �0.59 to �0.07, p = 0.013) and a-aminobu-

tyrate (IE b = �0.37, 95% CI: �0.56 to �0.17, p = 2.98e�4) (Fig-

ure 2C). These observations indicate a lower variance contribu-

tion of cystathionine levels to its downstream products in PD,

which is consistent with a capacity limitation in the conversion

of cystathionine to cysteine. Consequently, cystathionine would

accumulate, while the downstream concentrations of products

of this degradation reaction would be either unchanged (e.g.,

cysteine) or decreased (e.g., a-aminobutyrate and 2-hydroxybu-

tyrate) over time. Oxidative stress could inactivate the cystathio-

nine-g-lyase (Diwakar and Ravindranath, 2007). Alternatively,

cystathionine-g-lyase expression (Zhao et al., 2014) is modu-

lated by NRF2 expression, a key driver of the antioxidative

response (Katsuoka et al., 2005). NRF2 is induced by the tran-

scription factor MAFF, whose expression is downregulated in

PD (Oerton and Bender, 2017).

The ability to generate hydrogen sulfide from cysteine is an

important feature of human cystathionine-g-lyase activity (Be1-
towski and Jamroz-Wi�sniewska, 2014). While being potentially

pro-inflammatory in the gastrointestinal tract, hydrogen sulfide

has been shown to have neuroprotective attributes in PD pathol-

ogy (Hu et al., 2010). As we found indications for reduced cysta-

thionine-g-lyase activity in PD (Figures 2B and 2C), the produc-

tion of hydrogen sulfide may be disturbed, which in return may

promote disease progression.

In conclusion, the transsulfuration pathway, central to the anti-

oxidant response, showed complex alterations at baseline and

over time. This result agrees well with the current understanding

that PD is, at least in part, a disease driven by mitochondrial

dysfunction (Singh et al., 2019).

PD Affects Metabolite-Metabolite Dependencies
Next, we screened any pair of metabolites on PD-specific

dependencies. We identified 2 significant metabolite pairs

after correcting for multiple testing. For both pairs, the effects

were stable over the 3 waves (Figures S2A and S2B). The 2
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sphingomyelin species SM(d18:1/25:0) and SM(d18:1/25:1)

were highly correlated in controls, but poorly correlated in

PD cases (Figures S2A and S2B) (IE b = �0.53, 95% CI: �0.73

to�0.33, p = 3.23e�7, FDR < 0.05). As sphingomyelins aremajor

components of cell membranes (Slotte, 2013), this result hints

at different sphingomyelin distributions in cell membranes in

PD and controls. The missing correlation in PD may be inter-

preted as the uncoupling of the 2 sphingomyelin species abun-

dances in cell membranes. Numerous studies have implicated

sphingolipid metabolism and genetic variants in associated

genes (e.g., the sphingomyelin phosphodiesterase 1, SMPD1,

Entrez Gene: 6609) in neurodegenerative diseases, including

PD (Dodge, 2017; Foo et al., 2013). However, the role of individ-

ual sphingomyelin species in their interactions with other lipid

species, such as cholesterols, and their distribution in cell mem-

branes remains largely unknown (Róg and Vattulainen, 2014). As

we report only plasma concentrations, inferences about the

sphingomyelin distributions in the CNSs cannot be made.

Homocitrulline and lysophosphatidylcholine 16:0 showed

positive correlations in controls and negative correlations in PD

(Figures S2A and S2B) (IE: b = �0.34, 95% CI: �0.47 to �0.21,

p = 3.14e�7, FDR < 0.05). As homocitrulline is a known marker

for chronic, low-grade inflammation (Pietzner et al., 2017), a

positive correlation with lysophosphatidylcholines may be ex-

pected, as lysophosphatidylcholines are known drivers of pe-

ripheral inflammatory states (Schmitz and Ruebsaamen, 2010).

The reversal of the correlation may indicate that in PD, which

has a peripheral inflammatory component (Qin et al., 2016), the

systemic low-grade inflammation may not have the same effects

as in non-PD individuals.

Figure 2. Longitudinal Alterations in the Human Transsulfuration Pathway in Association with PD

(A) Changes in human transsulfuration pathway at baseline. Altered metabolite concentration (p < 0.05, FDR < 0.05 for difference in trajectory) in comparison to

the control group are highlighted.

(B) Longitudinal changes in transsulfuration within the PD group. Metabolites with significant trajectory within the PD group are highlighted (solid: p < 0.05, FDR <

0.05; dashed: p < 0.05, FDR > 0.05).

(C) Altered metabolite-metabolite associations over the 3 waves in the transsulfuration pathway are shown.

(D) Boxplots over the waves for all of the measured compounds in the transsulfuration pathway within the PD group are shown. The log concentrations were

centered to the individual mean. BL, baseline; FU1, follow-up I; FU2, follow-up II.

1770 Cell Reports 29, 1767–1777, November 12, 2019



Dopaminergic Medication Modulates the
Transsulfuration Pathway
We investigated the effects of dopaminergic treatment as a

potential causal factor for the observed dynamics in the transsul-

furation pathway. We associated inter-individual metabolite

level changes with corresponding changes in the administered

levodopa equivalent dosages of dopaminergic medication

(Figure 3A; Method Details). Among metabolites with PD-spe-

cific trajectories, only 3-OMD (b = 0.614, 95% CI: 0.377–0.851,

p = 3.92e�7, FDR < 0.05) and cystathionine reached at least

nominal significance (b = 0.078, 95% CI: 0.007–0.149, p =

0.030, FDR > 0.05). Investigating the different prevalent dopami-

nergic drugs, levodopa was the driving factor behind these

associations (Figure 3B). However, we observed a saturation of

3-OMD levels (Figure 3B), indicating a capacity limitation to

generate 3-OMD by catecholamine O-methyltransferase

(COMT) activity, which also plays a role in, for example, epineph-

rine and norepinephrine degradation (M€uller et al., 2002). Alter-

natively, a depletion of the S-adenosylmethionine, the major

methyl donor for cellular methylation reactions, would be consis-

tent with the observations.

In conclusion, the proposed higher flux through the transsulfu-

ration pathway may be caused, at least in part, by levodopa

medication. The question of whether a potential depletion of

S-adenosylmethionine or COMT saturation may contribute to

the PD-related pathology requires further investigation. Dopami-

nergic medication alone could not explain statistically the PD-

specific trajectories of compounds belonging to the transsulfura-

tion pathway, which were already prevalent at baseline.

Dopaminergic Medication Has a Strong Lipodomic
Signature
In the next step, we screened the metabolome for further asso-

ciations with dopaminergic medication, using 2 analysis para-

digms (Data S1; seeMethodDetails). In intra-individual analyses,

2 lipids (phosphatidyl choline O-34:1 and triglyceride C58:9)

passed the correction for multiple testing (all FDR < 0.05). In

both cases, an intra-individual increase in equivalent dosage

was associated with a decrease in metabolite concentration,

hinting at drug-specific effects regarding the lipidomic changes

(Data S1).

In combined inter-individual and intra-individual analyses, we

identified 41 significant metabolite associations (FDR < 0.05;

Figures 1C and 3A; Data S1). The metabolites included a range

of different lipids, mainly phospholipid species and triglycerides,

and amine breakdown products of phospholipids (e.g., ethanol-

amine, serine), constituting an impressive drug-specific signa-

ture in the lipidome. Levodopa dosage had the highest number

of associations, 24, with 19 belonging to triglycerides (Figures

3A and S2D).

We observed associations between a-aminobutyrate and

dopaminergic medication (MAO-B inhibitors and dopamine

receptor agonists; Figure S2C). Comparable patterns could

be observed in tendency (p < 0.05, FDR > 0.05) for other trans-

sulfuration metabolites (methionine, cystathionine, and 2-hy-

droxybutyrate; Data S1). The effect sign of medication was in-

verse to the effect sign of longitudinal changes in these

metabolites. However, due to the observational nature of our

study, we could not differentiate between causes and conse-

quences of drug treatments.

The profound lipidomic signature raises the question of

whether dopaminergic treatment itself may contribute to the

peripheral inflammation observed in PD. Dopamine can stimu-

late the release of adipokines, regulators of lipid metabolism

and nutritional behavior (Bl€uher and Mantzoros, 2015), and

pro-inflammatory cytokines by adipocytes (Wang, 2012). Adipo-

kines are central regulators of lipid metabolism and, in the case

of leptin, also nutritional behavior (Bl€uher and Mantzoros, 2015).

Later stages of PD progression and usage of levodopa are often

accompanied by weight loss (Akbar et al., 2015), which, based

on our results, may be reflected in the lipidomic signature of

dopaminergic medication. Consistently, levodopa treatment

has been suggested as a predictor of weight loss (Wills et al.,

2017). However, the dietary habits may change in response to

dopaminergic medication, as noted by Aiello et al., (2015),

contributing to lipidomic changes. Clarifying the nature of the as-

sociations between the lipidomic alterations and dopaminergic

medication is therefore an intriguing target for future mechanistic

research with potential clinical implications.

Our results suggest a potentially clinically relevant interplay

of dopaminergic medication and PDwith respect to the transsul-

furation pathway. Finally, dopaminergic medication showed a

strong and broad signature in the lipidome.

Sulfur Metabolism Is Changed in PD-Associated Gut
Microbial Communities
To investigate the potential role of the gut microbes, we reana-

lyzed published metagenomic shotgun sequencing samples

from 31 early-stage, levodopa-naive PD patients and 28 age-

matched controls (Bedarf et al., 2017) using COBRA modeling.

We created 59 personalized computational microbiome

models based on these data (seeMethod Details). Of 5 microbial

reactions involving homoserine, 4 were significantly changed in

their abundances in the PD microbiome models (Figures 4A

and 4B), which is consistent with the elevated homoserine levels

in PD. Embedding these reactions in their biochemical context

(Figure 4A) of generating methionine from aspartate, we compu-

tationally predicted the secretion flux potential for each of the

pathways’ metabolites that could be transported by the mi-

crobes (see Method Details). The secretion potential of methio-

nine, hydrogen sulfide, and sulfite was increased in PD micro-

biome models, while the asparagine secretion potential was

decreased (Figures 4C and S3A; all FDR < 0.05). Accordingly,

the abundances of 2 microbial sulfite reductases (EC 1.8.2.2

and 1.8.7.1) in the PD microbiome models were increased

(Data S1).

In an analysis of the differential secretion potentials of 170

compounds, methionine was the top-hit passing correction for

multiple testing (see Data S1). In addition, this screening re-

vealed a strong overrepresentation of sulfur species in the

significant results. While 5/10 sulfur-containing compounds

had a p < 0.01, only 6/161 non-sulfur metabolites were signifi-

cant, with a p < 0.01 (Fisher’s exact test: p = 0.004). The secre-

tion potentials of cysteine-glycine, thiosulfate, and g-aminobuty-

ric acid (GABA) were also increased (FDR < 0.05). This latter

observation should be investigated in future work, as it suggests

Cell Reports 29, 1767–1777, November 12, 2019 1771



that the microbiome could contribute differently to mammalian

neurotransmitter production in PD.

Overall, our results demonstrate that the changes in microbial

composition of PD gut microbiomes could cause altered micro-

bial metabolic activity, which may be linked to the metabolism of

the measured host.

Increased Abundance of Akkermansia muciniphila and
Bilophila wadsworthia Explains Microbial Sulfur
Metabolism Capabilities
A. muciniphila and B. wadsworthia have been previously impli-

cated in PD pathology as part of the microbial communities

causal to the worsening of motor symptoms in genetically PD-

predisposed mice (Sampson et al., 2016), although the underly-

ing mechanisms have not yet been elucidated. Here, we linked

the species abundance data to the computed secretion pro-

files. The A. muciniphila abundance contributed 71.5% (p =

2.197e�17) of the variance to the total methionine secretion

potential, 59.0% (p = 7.735e�13) to the hydrogen sulfide secre-

tion potential, and 49.4% (p = 3.381e�10) to the asparagine

secretion potential. In contrast, the sulfite secretion potential

was only slightly influenced by A. muciniphila (variance expla-

nation: 16%, p = 0.001) (Figure S4B). We propose that

A. muciniphila contributes to PD pathology via hydrogen sulfide

production. Hydrogen sulfide, a highly reactive signaling mole-

cule with multiple roles in humans (Wang, 2012), is pro-inflam-

matory (Singh and Lin, 2015) and harmful to the integrity of

the mucus layer (Desai et al., 2016). Thus, the increased intes-

tinal levels of hydrogen sulfide may contribute to the gastroin-

testinal problems associated with PD, such as constipation,

Figure 3. Signatures of Dopaminergic Medication in the Metabolome

(A) Overview of results regarding dopaminergic medication, summarizing results significant after correcting for multiple testing (FDR < 0.05). Note that the global

tests have no effect sign.

(B) Change of 3-O-methyldopamine and cystathionine in dependency on change in levodopa dosage. In the lower panel, connected dots belong to the same

individual. The lower panel shows that the change in cystathionine was not dependent on levodopa dosage, while for 3-O-methyldopamine, high levels led to less

change.

(C) Association of bile acids and histidine with UPDRS III scores (all FDR < 0.05). BL, baseline; FU1, follow-up I; FU2, follow-up II; PC, phosphatidylcholine; TG,

triglyceride; UPDRS, Unified Parkinson’s Disease Rating Scale.
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and may lead to a higher absorption of bacterial toxins through

a thinner gut barrier.

B.wadsworthia also showed an increased abundance in the PD

microbiomes (control: mean abundance = 0.20%, PDs: mean

abundance = 0.34%, p = 0.020; Figure 4D), while it contributed

22.0% (p = 0.0001) of variance to the total sulfite secretion poten-

tial.Wepropose thatB.wadsworthia is a keystone species for sul-

fite production in the human gut microbiome. Accordingly,

B. wadsworthia has been associated with gut inflammation in

various mice models with implications for the host sulfur meta-

bolism (Devkota et al., 2012; Natividad et al., 2018). Moreover,

sulfite is a known neurotoxin affecting brain mitochondrial energy

homeostasis (Grings et al., 2014), and its increase reduces brain

cell glutathione levels (Zhang et al., 2004). Accordingly, we

observed reduced blood glutathione levels in the follow-ups of

the PD patients (Figure 2B). An increase in sulfite has been impli-

cated in PD (Marshall et al., 1999), but it has not been connected

to the human gut microbiome.

Taurine-Conjugated Bile Acids Are Stable Markers of
Variability in the Severity of Motor Symptoms
Finally, we hypothesized that the alterations in sulfur metabolism

may contribute to an individual’s disease severity. Three taurine-

conjugated bile acids (taurolithocholic acid [TLCA], taurodeoxy-

cholic acid [TDCA], and taurochenodeoxycholic acid [TCDCA])

were positively associated across the waves with the Unified

Parkinson’s Disease Rating Scale subscale III (UPDRS III) score

(clinical motor examination, in which a lower score corresponds

to better motor skills) and the glycine conjugate of chenodeoxy-

cholic acid and histidine (FDR < 0.05, Figure 3C; Table S3; Data

S1). In agreement, bile acid metabolism has been implicated in

neurodegenerative diseases, including PD (Ackerman and Ger-

hard, 2016).

In the liver, bile acids are conjugated with either taurine, a final

breakdown product of the transsulfuration pathway (Figures 2

and 3), or glycine (Alnouti, 2009). Subsequently, they are trans-

ported into the gastrointestinal tract, where the gut microbiota

Figure 4. Results from Analyses of Individualized Microbiome Models

(A) Depiction of microbial sulfur metabolism and generation of methionine from aspartate. The bold red arrow indicates the suggested increased overall flux

toward final products.

(B) Results of the statistical analyses of reaction abundances from fractional regressions.

(C) Boxplots in PDs and controls for altered secretion potentials in the pathway depicted above.

(D) Boxplots in PDs and controls for the abundance of Bilophila wadsworthia. Reaction abbreviations correspond to those in www.vmh.life.
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can deconjugate them. Based on our results, we propose a hu-

man-microbial transsulfuration cycle driven by the continuous

removal of taurine by B. wadsworthia and sulfur metabolite pro-

duction by A. muciniphila and B. wadsworthia. We also hypoth-

esize that the longitudinally stable association between taurine-

conjugated bile acids and UPDRS scores is furthered by

B. wadsworthia abundance-mediated peripheral inflammation.

In this context, it is worth noting that taurine itself is an inhibitory

neurotransmitter. Produced and secreted by neurons in various

scenarios of stress, including mitochondrial dysfunctions,

taurine appears to increase the chance of neuronal survival by

regulating calcium influx and stimulating the expression of anti-

oxidant genes (Saransaari and Oja, 2007; Wu et al., 2009).

Accordingly, taurine has been reported to be increased in the

brain in mice after the injection of a-synuclein (Graham et al.,

2018). These experimental studies emphasize the importance

of sulfur metabolism in the CNS in general and taurine in

particular.

In conclusion, sulfur metabolism is profoundly changed in PD

in interaction with gut microbiota, namely A. muciniphila and

B. wadsworthia. We provided evidence that these changes

may translate via taurine-conjugated bile acids into variability

in severity of clinical symptoms based on the UPDRS subscale

III in PD. Beyond PD, the interplay between microbiota, espe-

cially B. wadsworthia, and mammalian transsulfuration could

have implications for other diseases related to oxidative stress

response, as has already been shown for metabolic disorders

in mice models (Devkota et al., 2012; Natividad et al., 2018).

Sulfated Taurolithocholic Acid Associates with PD
Incidence in the General Population
As the aforementioned analyses had not been designed to pro-

vide insight into a possible role for these compounds in disease

etiology, we extended our analysis by investigating whether

taurine-conjugated bile acids are associated with PD incidence.

Therefore, we used a large, prospective general population

cohort, the European Prospective Investigation of Cancer, Nor-

folk (EPIC-Norfolk) (Day et al., 1999). In EPIC-Norfolk, untargeted

metabolome data were available from stored baseline samples

of 10,034 individuals, 157 of whom have been subsequently

diagnosed with PD based on either hospital admission records

or death certificates during >20 years of follow-up. We used

Cox proportional hazards regression analyses to test associa-

tions between 7 different taurine-conjugated bile acids and PD

incidence, adjusting for age, sex, BMI, smoking, and plasma

abundances of C-reactive protein (Data S1). Taurolithocholate

3-sulfate was significantly associated with a reduced risk of

developing PD after accounting for multiple testing (hazard ratio

per SD = 0.80, 95%CI: 0.69 to 0.94, p = 0.0055). The hepatic sul-

fation of secondary bile acids serves as a detoxification mecha-

nism by increasing the water solubility of bile acids and, subse-

quently, their clearance via filtration (Alnouti, 2009). In addition,

the reuptake of sulfated bile acids by the liver is less efficient,

which limits in return their enterohepatic recirculation (Alnouti,

2009; Gärtner et al., 1990). Note that only taurolithocholic acid

(desulfated) showed a significant relation to the symptoms in

the PD cases (Figure 3C). These results indicate that PD-relevant

host-microbial interactions in sulfur and, interlinked, bile-acid

metabolism may play a role in the development of the disease.

Limitations
In our study, the effects of exercise were not monitored. How-

ever, the metabolomic signature of exercise as reported in the

literature (Daskalaki et al., 2015) does not overlap with our re-

ported changes in transsulfuration, and in early PD, no major

differences to controls in exercise could be recorded (Mantri

et al., 2018). In addition, we cannot rule out that our results

were influenced by dietary variance, although it seems unlikely

given the high homogeneity in the case-control design. More-

over, the associations between the lipidomic alterations and

dopaminergic medication require further investigations. Longi-

tudinal studies integrating several layers of metabolome data

(fecal, blood, and urine) with metagenomics data within the

same individuals are needed to corroborate and extend our re-

sults. Finally, being explorative in nature, our metabolomic an-

alyses are not suitable for mechanistic insights, but are only

able to provide a holistic description of metabolic alterations

facilitating novel hypothesis generation.

Conclusion
The systemic nature of PD stronglymanifests in themetabolomic

trajectories over time. Analyzing these PD-specific trajectories in

combination with the metagenomics data of gut microbial com-

munities opens up new research routes toward a better under-

standing and prediction of phenotypic variability in PD.
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STAR+METHODS

KEY RESOURCES TABLE

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Ines

Thiele (ines.thiele@nuigalway.ie). This study did not generate new unique agents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study participants from the De Novo Parkinson’s disease cohort (DeNoPa)
Samples and data of PD subjects and healthy controls were part of the longitudinal de novo Parkinson’s disease (DeNoPa) cohort

(Mollenhauer et al., 2013, 2016). Recruitment was initiated between 2009 and 2010 at the Paracelsus-Elena-Klinik, Kassel, Germany,

and consisted of 110 healthy controls and 159 de novo PD patients with frequency matching of cases and controls regarding age,

sex, and education. Inclusion and exclusion criteria have been previously described in detail (Mollenhauer et al., 2013, 2016). All PD

subjects had to fulfill de novo criteria with L-DOPA exposure no longer than 2 weeks and not within 4 weeks prior to study entry (as in

the ADAGIO trial (Olanow et al., 2008)). In brief, participants were between 40 and 85 years old, without known vascular encepha-

lopathy, hydrocephelaus, multiple system atrophy, and progressive supranuclear palsy. Healthy controls were, in addition, without

known or treated psychiatric or neurological conditions. Subjects were followed biannually. Plasma samples were drawn in themorn-

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

EDTA-plasma samples DeNoPa Mollenhauer et al., 2013 https://www.denopa.de/

Critical Commercial Assays

DiscoveryHD4� platform Metabolon Inc. N/A

Deposited Data

Shotgun sequencing data stool samples Bedarf et al., 2017 ERP019674

Genome scale reconstructions (AGORA v1.02) Magnúsdóttir et al., 2017 vmh.life

Summary statistics This Paper Data S1

Software and Algorithms

COBRA Toolbox Heirendt et al., 2019 https://opencobra.github.io/

Microbiome Modeling Toolbox Baldini et al., 2019 https://github.com/opencobra/cobratoolbox/

tree/master/src/analysis/multiSpecies/

microbiomeModelingToolbox/

Rsamtools(v1.32.0) Morgan et al., 2019 https://rdrr.io/bioc/Rsamtools/

Burrows-Wheeler-Aligner software Li and Durbin, 2009 http://bio-bwa.sourceforge.net/

Samtools Li et al., 2009 http://samtools.sourceforge.net/

IBM CPLEX IBM Inc. N/A

R-Studio N/A https://www.r-project.org/

STATA 14/MP STATA Inc. N/A

MATLAB v2016b Mathworks Inc. N/A

Other

Leiden Targeted Metabolomics Platform Leiden University BioMedical

Metabolomics Facility

https://www.universiteitleiden.nl/en/research/

research-facilities/science/biomedical-

metabolomics-facility-leiden

Data from the EPIC-Norfolk study Day et al., 1999 http://www.srl.cam.ac.uk/epic/contact/

index.shtml

Statistical and computational scripts This paper https://github.com/ThieleLab/CodeBase/tree/

master/Scripts_Hertel_CellReports_2019

Clinical and metabolomic data from the DeNoPa study This paper brit.mollenhauer@paracelsus-kliniken.de
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ing fasting with BD Vacutainer and processed as published. The study was conducted according to the Declaration of Helsinki and

with informed written consent provided by all subjects. The study was approved by the ethics committee of the Physician’s Board

Hessen, Germany (Approval No. FF89/2008) and has been registered at the German Register for Clinical trials (DRKS00000540) ac-

cording to the WHO Trial Registration Dataset.

Computationally optimized sample matching and selection in DeNoPa
For the metabolomic characterization, 30 PD patients and 30 controls were selected from the DeNoPa cohort matched for age, sex,

body mass index, and multiple comorbidities. EDTA-plasma samples (500 mL each) from the baseline assessment, the follow-up I

(24 months), and the follow-up II (48 months) were obtained and subjected to metabolomics characterization. For one control partic-

ipant, metabolomic characterization failed at the baseline due to missing biomaterial resulting in 179 metabolomic profiles in total.

In order to minimize the influence of confounding factors on the metabolomics measurements and remove unwanted sources of

variation, we applied multiple filtering steps to the biospecimen collection for the DeNoPa cohort and computationally optimized the

matching and selection of the 30 patients and 30 control biospecimens used for metabolic profiling.

First, in order to reduce variation in the biospecimen-derived data due to the presence of non-representative genetic forms of PD,

we filtered out all samples from subjects with known PD-associated genetic alterations in the genes GBA, PRKN and DJ1, as well as

subjects with the SNCAREP1 263bp promotor variant (Ritz et al., 2012). For the remaining samples from the cohort, the selection was

optimized by computationally searching for a selection of 30 patients and 30 controls that best meets the following criteria: (1) the

gender representation should be balanced and matched across patients and controls; (2) the age and body mass index (BMI) dis-

tributions should be as similar as possible for selected patients and controls (measured using the Kolmogorov-Smirnov Test); (3)

to reduce influences of medication and comorbidities on the metabolomics measurements, the number of subjects in the selection

who usedmedication for blood pressure related issues or othermedical symptoms should beminimized; and (4) the number subjects

with known common genetic variations that may affect PD-risk or PD-related symptoms, in particular subjects with the SNCA poly-

morphism rs1193107 (Liu et al., 2018) or with one or two APOE E4 alleles, which cannot not be filtered out completely due to their

frequent occurrence, should be minimized in the selection. In order to optimize the sample selection for these criteria, the prefiltered

set of biospecimen available in for the cohort was filtered in a recursive feature elimination procedure by iteratively removing the sam-

ples, whose exclusion maximally improved the current selection. For this purpose, sample selections were scored within the iterative

procedure by quantifying the deviations from the theoretically achievable optimum for each criterion and computing the sum of these

deviations (except for the gender representation, which was required to be optimally matched and balanced, all other criteria entered

the sum of deviations score with an equal weight). Information on age, sex, and further basic covariates can be found in Table S1.

Study participants from the EPIC-Norfolk study
The EPIC-Norfolk study is a cohort of 25,000 individuals aged between 40 and 79 at recruitment, from the general population of Nor-

folk (East England) (Day et al., 1999), nested within the European Prospective Investigation into Cancer and Nutrition (EPIC). The

study was approved by the Norwich Local Ethics Committee (previously known as Norwich District Ethics Committee; REC Ref:

98CN01) and all participants gave their written consent before entering the study. Untargeted metabolomics were measured using

the DiscoveryHD4� platform (Evans et al., 2014) (Metabolon, Inc., Durham, USA) in non-fasted citrated plasma samples, in two

quasi-randomly selected batches. Metabolite levels were median-normalized across run days and no imputation of missing values

was performed. Prior to statistical analyses,metabolite levels were natural log transformed, winsorised (to 5 standard deviations (SD))

and standardized (m = 0, SD = 1). Processing was performed for each batch separately. The reported analyses included 10,034 in-

dividuals with full covariate information and metabolomic quantifications measured. The mean in age was 59.8(SD = 8.9) and 53% of

the participants were female. Hospitalisation data were obtained using National Health Service numbers through linkage with the

East Norfolk Health Authority (ENCORE) database, which contains information on all hospital contacts throughout England and

Wales. Participants were identified as incident cases if the corresponding ICD-9 or ICD-10 code was registered as the cause of hos-

pitalisation, or on the death certificate (as the underlying cause of death or as a contributing factor). The current study includes follow-

ups until 31st March 2016. The dataset contained 157 incident PD cases with a mean time to event of 13.9 years (SD 4.7), while prev-

alent PD cases based on self-reported medication reports were excluded.

METHOD DETAILS

Procedures and measurements of phenotyping in DeNoPa
The complete protocol of all procedures is reported elsewhere (Mollenhauer et al., 2013), including comprehensive neuropsychiatric

testing, clinical assessments, sampling of biomaterial, and biobanking. Using a standardized protocol, assessments were carried out

in cases and controls in the same order in all three waves of observations. In this study, we focused on the core symptoms of PD

measured by the revised Unified Parkinson’s Disease Rating Scale (Goetz et al., 2007), consisting of four subscales (I: non-motor

experiences of daily living; II: motor experience of daily living; III: motor examination; and IV: motor complications). For the initial

screening of metabolic biomarkers, we also utilized the total sum of all four scores as an overall indicator for the severity of PD

symptoms.
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Medication data in DeNoPa
By design of the DeNoPa study, all PD patients were drug-naive at baseline assessments, being treated subsequently with dopami-

nergic modulators according to German S3-guidelines. At baseline, the study protocol ensured that patients stopped levodopa

intake at least four weeks prior enrolment (Mollenhauer et al., 2013, 2016). Nonetheless, we observed three cases at baseline

with at least 10-fold increased 3-OMD levels compared to drug-naive PD patients (Figure 1B). However, two of these cases exhibited

lower 3-OMD levels than most of the levodopa-treated patients (increase up to 600-fold), such that it is unclear whether these pa-

tients were taking levodopa at baseline against the study protocol or whether the time-period of four weeks was long enough to

wash out all levodopa related metabolites. Plausible alternative explanations include variation in genes involved in dopamine meta-

bolism (Jiménez-Jiménez et al., 2014; Klebe et al., 2013), or metabolic activity of the gut microbiome, which can produce dopamine

and dopamine precursor (Belik et al., 2017) In the follow-up assessments, the daily doses of levodopa and the equivalent dosages

(according to (Tomlinson et al., 2010)) were recorded at the day of blood sampling. These reports were compared with the 3-OMD

levels frommetabolomic analyses, revealing a perfect classification (AUC = 1) of levodopa intake by 3-OMD in the follow-up assess-

ments. However, at baseline, three PD patients showed strongly increased 3-OMD levels, indicating that they took levodopa medi-

cation while being self-reported drug-naive. Further, one observation showed missing values in the dosage variable, while having

strongly increased 3-OMD levels. These four observations were re-classified as ‘levodopa-treated’ for statistical analyses or, if in-

formation about dosage was required, excluded.

Metabolomic Measurements in DeNoPa
Metabolomic measurements were performed at the Leiden University BioMedical Metabolomics Facility, using previously described

and validated mass-spectrometric (MS) based platforms.

Bile acid profiling

50 mL of each plasma samplewas spikedwith internal standard solutions. The extraction of the bile acids compounds is performed by

protein precipitation withmethanol. After collection, the supernatant is concentrated by first drying and then reconstituted in a smaller

volume. After reconstitution, the extract is transferred into amber autosampler vials for analysis. A Shimadzu system formed by three

high pressure pumps (LC-30AD), controller (CBM-20Alite), auto sampler (SIL-30AC) and an oven (CTO-30A) fromShimadzu Benelux,

was coupled online with a LCMS-8050 triple quadrupole mass spectrometer (Shimadzu) operated using LabSolutions data acquisi-

tion software (Version 5.89, Shimadzu). The samples were analyzed by UPLC-MS/MS using an Acquity UPLC HSS T3 column (Wa-

ters). The triple quadrupole mass spectrometer was used in negative ion mode and all analytes were monitored in dynamic Multiple

Reaction Monitoring (dMRM).

Acylcarnitine profiling

10 mL of each sample was spiked with an internal standard solution. Then proteins were precipitated by the addition of MeOH. The

supernatant was transferred to an autosampler vial. The vials were transferred to an autosampler tray and cooled to 10�C until the

injection. 1.0 mL of the sample mixture was injected into the triple quadrupole mass spectrometer. Chromatographic separation was

achieved by UPLC (Agilent 1290, San Jose, CA, USA) on an AccqTag Ultra column (Waters) with a flow of 0.7 mL/min over a 11 min

gradient. The UPLC was coupled to electrospray ionization on a triple quadrupole mass spectrometer (Agilent 6460, San Jose, CA,

USA). Analytes were detected in the positive ion mode and monitored in Multiple Reaction Monitoring (MRM) using nominal mass

resolution. The acquired data were evaluated using Agilent MassHunter Quantitative Analysis software (Agilent, Version B.05.01),

by integration of assigned MRM peaks and normalization using proper internal standards. The closest-eluting internal standard

was employed. In-house developed algorithms were applied using the pooled QC samples to compensate for shifts in the sensitivity

of the mass spectrometer over the batches.

Amine profiling

The amine platform covers amino acids and biogenic amines employing an Accq-tag derivatization strategy adapted from the pro-

tocol supplied by Waters. 5 mL of each sample was spiked with an internal standard solution. Then proteins were precipitated by the

addition of MeOH. The supernatant was transferred to a new Eppendorf tube and taken to dryness in a speedvac. The residue was

reconstituted in borate buffer (pH 8.5) with AQC reagent. After reaction, the vials were transferred to an autosampler tray and cooled

to 4�C until the injection. 1.0 mL of the reactionmixture was injected into the UPLC-MS/MS system. Chromatographic separation was

achieved by an Agilent 1290 Infinity II on an Accq-Tag Ultra column (Waters) with a flow of 0.7 mL/min over a 11 min gradient. The

UPLC was coupled to electrospray ionization on a triple quadrupole mass spectrometer (AB SCIEX Qtrap 6500). Analytes were de-

tected in the positive ion mode and monitored in Multiple Reaction Monitoring (MRM) using nominal mass resolution. Acquired data

were evaluated usingMultiQuant Software for Quantitative Analysis (AB SCIEX, Version 3.0.2), by integration of assignedMRMpeaks

and normalization using proper internal standards. For analysis of amino acids their 13C15N-labeled analogs were used. For other

amines, the closest-eluting internal standard was employed. Blank samples were used to determine blank effect. Inhouse developed

algorithms were applied using the pooled QC samples to compensate for shifts in the sensitivity of the mass spectrometer over the

batches.

Oxidative stress profiling

The oxidative stress platform is divided in two chromatographicmethods: low and high pH. In the lowpHmethod, isoprostanes, pros-

taglandins, nitro-fatty acids and lyso-sphingolipids are analyzed. The high pH method covers lyso-sphingolipids, lysophosphatidic

acids, alkyl-lysophosphatidic acids and cyclicphosphatidic acids. 150 mL of each plasma sample was spiked with antioxidant and
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internal standard solutions. To extract the analytes from the aqueous phase, butanol and ethyl acetate are used. After collection, the

organic phase is concentrated by first drying and then reconstituted in a smaller volume. After reconstitution, the extract is transferred

into amber auto sampler vials and used for high and low pH injection, respectively. A Shimadzu system formed by three high pressure

pumps (LC-30AD), a controller (CBM-20Alite), and autosampler (SIL-30AC) and an oven (CTO-30A) from Shimadzu Benelux, was

coupled online with a LCMS-8050 triple quadrupole mass spectrometer (Shimadzu) operated using LabSolutions data acquisition

software (Version 5.89, Shimadzu). The samples were analyzed by UPLC-MS/MS using a Kromasil Eternity XT C18 column (Akzo

Nobel) for high pH and an Acquity BEH C18 column (Waters) for the low pH method. The triple quadrupole mass spectrometer

was used in polarity switchingmode and all analytes weremonitored in dynamicMultiple ReactionMonitoring (dMRM). Sphingosines

C17:1 and C18:1, Sphinganines C17:0 and C18:0, PAF C16:0 and PAF C16:0-d4 were measured in positive ion mode. The other me-

tabolites were detected in negative mode. The acquired data was evaluated using LabSolutions software (Shimadzu), by integration

of assignedMRMpeaks and normalization using accordingly selected internal standards.When available, a deuterated version of the

target compound was used as internal standard. For the other compounds, the closest-eluting internal standard was employed. An

in-house written tool is applied using the QC samples to compensate for shifts in the sensitivity of the mass spectrometer throughout

the batches. Both internal standard correction and QC correction were applied to the dataset.

Organic acid profiling

Sample preparation was done by doing first protein precipitation of 50 uL of plasma using MeOH/H2O with ISTD added. After centri-

fugation and transferring the supernatant, the samples evaporated to complete dryness on the speedvac. Then, two-step derivati-

zation procedures were performed on-line: oximation using methoxyamine hydrochloride (MeOX, 15 mg/mL in pyridine) as first re-

action and silylation using N-Methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) as second reaction were carried out. 1 mL of each

sample was injected directly after its derivatization onGC-MS. Themetabolites weremeasured by gas chromatography on an Agilent

Technologies 7890A equipped with an Agilent Technologies mass selective detector (MSD 5975C) andMultiPurpose Sampler (MPS,

MXY016-02A, GERSTEL). Chromatographic separations were performed on a HP-5MS UI (5% Phenyl Methyl Silox), 30 m3 0.25 m

ID columnwith a film thickness of 25 mm, using helium as the carrier gas at a flow rate of 1,7mL/min. A single-quadrupole mass spec-

trometer with electron impact ionization (EI, 70 eV) was used. The mass spectrometer was operated in SCAN mode mass range 50-

500. The raw data were pre-processed using Agilent MassHunter Quantitative Analysis software (Agilent, Version B.05.01). In-house

developed algorithmswere applied using the pooled QC samples to compensate for shifts in the sensitivity of themass spectrometer

over the batches.

Positive lipid profiling

For positive lipid measurements in plasma samples, 1000 mL isopropyl alcohol containing internal standards were added to 10 mL

plasma sample. Samples were centrifuged and supernatant was transferred to vials for LC-MS analysis. 2.5 mL was injected on a

ACQUITY UPLC (Waters, Ettenleur, the Netherlands) with a HSS T3 column (1.8 mm, 2.1 * 100 mm) with a flow of 0.4 mL/min over

a 16 min gradient. The lipid analysis is performed on a UPLC-ESI-Q-TOF (Agilent 6530, Jose, CA, USA) high resolution mass spec-

trometer using reference mass correction. Lipids were detected in full scan in the positive ion mode. The raw data were pre-pro-

cessed using Agilent MassHunter Quantitative Analysis software (Agilent, Version B.04.00). The lipid response was calculated as

the peak area ratios of the target analyte to the respective internal standard.

Negative lipid profiling

For negative lipid analysis, 50 mL of plasma sample was used. 50 uL of internal standard solution was added after which precipitation

of the proteins was carried out by adding 550 uL ofMeOH. After precipitation of the proteins and centrifugation, 600 uL of supernatant

was transferred and dried. The reconstitution step was done by adding 300 uL of isopropanol with 0.1% formic acid. The prepared

samples were transferred to vials for LC-MS analysis. 8 mL was injected in total for analysis. The lipid analysis is performed on a ACQ-

UITY UPLC (Waters, the Netherlands) coupled to a high resolution mass spectrometer with a Synapt G2 Q-TOF system (Waters, the

Netherlands) using reference lockmass correction. Lipids were detected in full scan in the negative ionmode. Chromatographic sep-

aration was achieved using a HSS T3 column (1.8 mm, 2.1 * 100mm) with a flow of 0.4mL/min over a 16minute gradient. The raw data

was pre-processed using Targetlynx software (Masslynx, V4.1, SCN916). The lipid responsewas calculated as the peak area ratios of

the target analyte to the respective internal standard.

The QC-RSD and full descriptive statistics of the metabolome data, including data-base identifier, can be found in Data S1.

Mapping of metabolites frommetabolomics data from the DeNoPa study onto the Virtual Metabolic Human database
Using themetabolite identities (names, HMDB IDs, lipidmaps IDs) accompanying themetabolomic data, we translated,manually and

automatically, the metabolites into the corresponding VMH IDs using the VMH’s API and the query interface (Noronha et al., 2018).

Using the API, we identified all metabolites being part of the human metabolic reconstruction (Brunk et al., 2018), the gut microbial

reconstructions (Magnúsdóttir et al., 2017), and the composition of the food stuff (US Department of Agriculture, Agricultural

Research Service Program; Finley and Klurfeld, 2013).
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Computing individual resolved strains relative abundance
Published metagenomic data from a cohort of early-stage, drug-naive, male Parkinson patients (n = 31) and age-matched, healthy

controls (n = 28) (Bedarf et al., 2017) was obtained from the European Bioinformatics Institute-Sequence Read Archive database:

ERP019674. For each individual, we combined the corresponding fastq files into one file. To obtain individual resolved strain abun-

dances, we used the same protocol as described elsewhere (Bauer and Thiele, 2018). Briefly, the genomes of the 773 gut microbes,

for which genome-scale metabolic reconstructions were available at the VMH database (www.vmh.life, v1.02), were obtained from

KBase (https://kbase.us/) and NCBI Genome (https://www.ncbi.nlm.nih.gov/genome/) and combined into one file, such that each

genome corresponds to a chromosome, representing the reference genome. Using Burrows-Wheeler Aligner (BWA) software (Li

and Durbin, 2009) with default parameters, the paired reads were mapped to the human genome (version 38) to exclude human

contaminant sequences. Subsequently, the metagenomic reads were mapped onto the reference genome using BWA with default

parameters. Samtools (Li et al., 2009) was used to identify mapped reads discarding reads with low quality score and cross-mapped

reads: coverage per genome (number of reads bases mapping the genome divided by the genome length) was computed with R

package ‘‘Rsamtools’’ (Morgan et al., 2019). A minimal value of 0.1 of coverage (10%) was considered as a lower threshold for as-

sessing microbial presence, reducing the number of false positives. Finally, relative abundances were retrieved for each individual

microbiome, normalizing the total sum of microbial abundances to one.

Constructing and simulating individualized gut microbiota models
The genome-scale gut microbial reconstructions were downloaded from the VMH database (version AGORA 1.02 - Unconstrained).

We then used the mgPipe module of the Microbiome Modeling Toolbox (Baldini et al., 2019) to create personalized microbiota

models for each of the 59 individuals. Briefly, mgPipe combines all 773 microbial reconstructions into one microbial community

reconstruction by placing them into one lumen compartment ([lu]), from which they can take up nutrients or secrete into by-products

(Thiele et al., 2013). Dietary inputs (through reactions, such as ‘Diet_EX_glc_D[d]’ for D-glucose) are given into this lumen compart-

ment and byproducts not been used by any community member are excreted from this lumen compartment using the defined

exchange reactions (e.g., ‘EX_ac[fe]’ for acetate excretion). The community reconstruction also contains a community biomass re-

action. The stoichiometric factors of this community biomass reaction were adjusted based on the determined relative abundances

of each strain in a given metagenome. Strains that could not be detected in a sample, were removed from the corresponding

individual microbial community model to reduce computation time. For all personalizedmicrobial community models, a standard Eu-

ropean diet (Noronha et al., 2018) was applied as constraints. The community biomass reaction for each personalized model was

constrained to a lower bound > = 0.4 per day and an upper bound % 1 per day, which corresponds to fecal excretion from at least

every 3 days and at most once a day. For each personalized gut microbiota model, we then determined the next maximal secretion

profiles as the absolute value of the difference between maximal secretion and uptake of all the compounds associated with uptake

and excretion reactions in the model using flux balance analysis (Orth et al., 2010). All computations were performed in MATLAB

version 2016b (Mathworks, Inc.), using the COBRA Toolbox (Heirendt et al., 2019) (commit: b097185b641fc783fa6fea4900bd-

d303643a6a7e) and theMicrobiomeModeling Toolbox (Baldini et al., 2019). For solving the linear programming problems underlying

the flux balance analysis, we used the IBM CPLEX (IBM, Inc.) solver through the Tomlab (Tomlab, Inc.) interface.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses on DeNoPa data
For descriptive statistics, metric variables were described by means and standard deviations, while nominal variables were

described by proportions. Additionally, intra-class correlations (ICC) were calculated, stratified for study group from mixed effect

generalized linear models including the wave as predictor with random intercept for the subjects. The only variable with missing

values was the levodopa dosage variable (n = 4). These observations were excluded from analyses, whenever the dosage was

included into analyses. Note that in the case of mixed effect modeling only the observation was dropped but not the individual.

All p values are reported two-tailed and variables were controlled for outliers. Observations withmore than four standard deviations

away from the mean were excluded from analyses. Furthermore, significant findings were visually inspected via box-plots and distri-

butional plots to lessen the chance of false positives by undetected outliers. Statistical analyses were performed in STATA 14/MP

(College Station, Texas, USA). Summary Statistics of the performed analyses are given in the Supplemental data file Data S1.

Note that although 271 metabolites were quantified 272 metabolite concentrations were analyzed. One metabolite (spingosine)

was measured by two different methods.

Analyses of PD trajectories
To identify PD-specific trajectories in the metabolome, a series of mixed effect linear regression models were fitted with random in-

tercepts for study participants and the logmetabolite concentration being the response variable. Themixed effect models were fitted

using generalized least-squares and heteroscedastic robust standard errors. First, we fitted models stratified for PD patients and

controls testing on time-dependent metabolites within both study groups. These regressions were performed with the wave (cate-
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gorical) as predictor of interest, adjusted for age and sex. In the next step, we tested for PD-specific trajectories in a combined anal-

ysis. We included group, wave (categorical), group-wave interaction terms as predictors of interest, adjusting for age and sex to

reduce residual variance, enhancing thereby statistical power. We tested the group variable and the two group-wave interaction

terms simultaneously on zero with a Wald test (Harrell, 2001), which we denote as global test. This global test combines information

on the main effect of the group variable with differential trajectories over time into one statistic, which was used for primary screening

on effects. In secondary analyses, we tested each component of the global statistics alone. Note that for the analyses of potential

main effects of the group variable, the interaction effects were omitted. For sensitivity analyses, we adjusted all regression models

additionally for medication (equivalent dosages (metric) and wave-dosage interaction term). To account for multiple testing, the Ben-

jamini-Hochberg (BH) procedure was applied correcting for 272 regressions. A FDR < 0.05 was considered as significant. Post hoc,

we explored the multivariate structure of the metabolome-wide significant metabolites showing the same longitudinal pattern in PD

via a principle component analyses and examined the loading pattern on the first two principle components. For full results see Data

S1.

To test the influence of PD on the statistical relation between twometabolites, mixed effect linear regressions were fitted, addition-

ally including serially eachmetabolite and ametabolite-group interaction term into themodel. We adjusted for age, sex, wave, group,

andmedication (equivalent dosages (metric) andwave-dosage interaction term). Here, themetabolite-group interaction termwas the

predictor of interest, capturing information on the question whether PD influences the statistical relation between two metabolites.

This setup resulted in 272 times 271 regressions testing each pair of metabolites. Note that in comparison to analyzing ratios of con-

centrations, the applied procedure delivers exact p values for a change in statistical metabolite-metabolite relations in dependency

on PD while avoiding the statistical problems accompanying the use of ratios (Hertel et al., 2018; Kronmal, 1993). BH correction was

applied accounting for 73,712 tests.

Effects of medication
To explore the effects of PDmedication on themetabolome, two analysis paradigms were applied. The first analysis paradigm inves-

tigatedwhether changes in dopaminergic medication dosageswere associated with changes in individual metabolite concentrations

in the PD group. To this end, we calculated the changes in metabolite concentrations between baseline and follow-up I, and between

follow-up I and II, as well as the changes in equivalent dosages of dopaminergic medication. Then, we fitted mixed effect linear re-

gressions with the change in metabolite concentration being the response variable and the change in equivalent dosages being the

predictor of interest, including age, sex, length of disease, and the interval (baseline to follow-up I, follow-up I to follow-up II) as co-

variates. For controlling the FDR, BH correction was applied accounting for 272 tests. Post hoc, we examined the type of medication

that was responsible for themetabolome-wide significant associations by testing the levodopa dosage, the total equivalent levodopa

dosage, and the equivalent dosage of dopaminergic medication other than levodopa in subsequent analogous regressions.

Next, we performed association analyses using mixed effect linear on metabolite concentration levels, testing globally on associ-

ations with dopaminergic medication. Here, in a first set of regressions, levodopa equivalent dosages (levodopa dosage and equiv-

alent dosage other than levodopa) were included as predictors of interest, while adjusting for age, sex, length of the disease, and

wave. Second, the three most frequent drugs (levodopa, pramipexole, and rasagiline) were included as predictor of interests as bi-

nary variables (intake: yes/no) adjusting for the same covariates as before. All terms were tested simultaneously on zero via Wald

tests to establish whether any linear combination of these three drugs, respectively dosages, could explain variance in metabolite

concentrations. BH correction was applied accounting for 524 tests.

Third, we tested each drug in a separate set of regressions on association with metabolites in analogous regression models, cor-

recting strictly for multiple testing. In terms of dosages, we tested for associations with levodopa dosage, total levodopa equivalent

dosage, and levodopa equivalent dosages of dopamine receptor agonists. The equivalent dosage of MAO-B inhibitors was not

included into this analysis, because of lack in variation. In terms of intake, we tested levodopa, pramipexole, and rasagiline. Thus,

we corrected for 6*272 = 1632 regressions using BH. The complete results are in the Data S1.

Associations with UPDRS scales
To analyze metabolite concentrations in association with the UPDRS in PD cases, mixed effect generalized linear models were

created using the UPDRS scales as response variable and the logmetabolite concentration as the predictor of interest. For the scales

I (non-motor experiences of daily living), II (motor experiences of daily living), and IV (motor complications), we chose ordered logistic

regressions to deal with the non-Gaussian distributions of the corresponding scores, while for the subscales III and the total sum of all

scores linear regressions were applied. The models were adjusted for age, sex, wave, length of disease, and medication (equivalent

dosages (metric) and wave-dosage interaction term). In primary analyses, we screened the total sum score for metabolomic asso-

ciations, whereas in secondary analyses the subscales of the UPDRS were explored. Correction for multiple testing was applied for

the primary analyses using BH accounting for 272 tests. The results of the secondary analyses were therefore only interpreted if a

metabolite was significant regarding the total sum of the scales after correction for multiple testing. For full results, see Data S1.
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Predictive metabolites for UPDRS scales at follow-up II
To test themetabolites associated with UPDRS scores on their potential predictive value, we performed generalized linear regression

analyses as described above.We used theUPDRS scores at follow-up II as response variable and the logmetabolite concentration at

baseline as predictor of interest, while adjusting for age, sex, disease duration, medication status (levodopa intake and equivalent

dosages) at follow-up I and baseline UPDRS scores. We focused on the subscale III (clinical motor examination), as the analyses

above revealed that this scale was causative for the associations. These analyses were repeated for predicting follow-up II values

with follow-up I characteristics and for predicting follow-up I values with baseline characteristics. The analyses were only performed

for metabolites being significant after correction for multiple testing in the association analyses to the UPDRS scores above. As five

metabolites were included into these analyses, we accounted for 15 tests in correction for multiple testing. In a second exploratory

step, all subscales were analyzed as well as the sum of all subscales, resulting in 60 tests to be corrected for via BH procedure. The

full results can be found in Data S1

Statistical analyses of individualized gut microbiota models and simulation results
We analyzed three statistical attributes of the personalized microbial community models, guided by the results of the metabolome

analyses. First, microbiota abundances were compared on the species level by using fractional regressions (Papke andWooldridge,

1996) with bootstrap derived standard errors based on 2000 replications. Fractional regressions are semiparametric generalized

models designed for the analyses of relative frequencies without distributional assumptions. They can be parametrized in odds ratio,

facilitating convenient interpretations of the regression coefficients. In these fractional regressions, the species abundance was the

response variable and the group variable (PD versus control) the sole predictor. These analyses were primarily conducted for vali-

dating the reference mapping procedure. The results of significantly changing microbes between the groups were comparable to

the original publication (Bedarf et al., 2017) and can be found in Data S1.

Second, for each personalized microbial community model, we analyzed the reaction abundances of all reactions involving homo-

serine and then all reactions in the pathway generating methionine from aspartate plus the reactions of the microbial transsulfuration

pathway. In total, 28 reactions were tested, from which several reactions clustered together resulting in 22 independent statistical

tests. Note that the reaction abundances were scaled by the relative abundances of the individual strains in the microbial community

models. These pathways were targeted because of the metabolomic results identifying alterations in homoserine levels and metab-

olites along the transsulfuration pathway. The statistical analyses of reaction abundances were performed by using fractional regres-

sions with the reaction abundance as response variable and the group variable (PD versus control) as sole predictor. To correct for

multiple testing, BH correction was applied adjusting for 22 tests.

Next, we analyzed the secretion potentials of metabolites belonging to the described pathways via linear regressions with boot-

strap-derived confidence intervals based on 2000 replications to get p values independent of distributional assumptions. The log

secretion potentials were the response variables and the group variable (PD versus control) was the sole predictor. We tested eight

secretion products, which exhibited variance in their secretion potentials and corrected for multiple testing accordingly using the

FDR.

Finally, we calculated the contribution of the species A. muciniphila and B. wadsworthia in term of explained variance to the sig-

nificant secretion potentials. This analysis was done using linear regressions with the log secretion potential as response variable and

the log species abundance as predictor. As graphical inspection indicated non-linearity (Figure S3), we used fractional polynomials

for modeling. Complete results on these analyses can be found in the ‘Data S1’ as well as Figure S3.

Statistical analyses of the EPIC-Norfolk data

We focused on taurine-conjugated bile acids in the statistical analyses of the EPIC-Norfolk cohort. Taurodeoxycholate, taurocheno-

deoxycholate, taurocholenate sulfate, taurocholate, tauro-beta-muricholate, taurolithocholate 3-sulfate, and tauroursodeoxycholate

were covered. Each metabolite was tested separately using a Cox-model with the incidence of PD as outcome resulting in seven

tests. Once again, we corrected for multiple testing using the FDR. All models were adjusted for age, sex, BMI, smoking status,

and plasma concentrations of C-reactive protein as an inflammatory marker. Since metabolomics profiling was done in two large

quasi-random batches, all analyses were performed for each batch separately and afterward meta-analyzed using fixed effect

meta-analyses. Full results on these analyses including a measure of heterogeneity of results between the two batches can be found

in the supplementary material (Data S1). Statistical analyses were performed in R (https://www.r-project.org/).

DATA AND CODE AVAILABILITY

The metagenomics data from Bedarf et al. is deposited at the European Bioinformatics Institute-Sequence Read Archive database:

ERP019674).

Application for access to EPIC Norfolk data or samples should be made via the study principal investigator Nick Wareham nick.

wareham@mrc-epid.cam.ac.uk and the study co-ordinator nicola.kimber@mrc-epid.cam.ac.uk. Approved data requests will require

a data sharing agreement between the applying research institution and the University of Cambridge. Links to contact information

and request forms can be found here: http://www.mrc-epid.cam.ac.uk/research/studies/epic-norfolk/. More details on the Data Ac-

cess & Sharing Policy can be found here: https://epi-meta.mrc-epid.cam.ac.uk/data_sharing_policy.shtml.
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The datasets generated from the DeNoPa cohort supporting the current study have not been deposited in a public repository due

to data protection laws for clinical data, but are available upon request submission, (brit.mollenhauer@paracelsus-kliniken.de), re-

view, and approval of a research proposal outline. Note that, as patient data is involved, German and EU laws for data protection

restrict public availability and have to be respected. Summary statistics of all analyses performed can be found in the supplemental

data files.

The code for all statistical scripts and all the scripts for processing the metagenomics data is deposited at github under https://

github.com/ThieleLab/CodeBase/tree/master/Scripts_Hertel_CellReports_2019. Genome-scale reconstructions for 773 microbes

are available at the VMH database (www.vmh.life, v1.02). The COBRA Toolbox can be downloaded from https://opencobra.

github.io/, and the Microbiome Modeling Toolbox (Baldini et al., 2019) is available at: https://github.com/opencobra/

cobratoolbox/tree/master/src/analysis/multiSpecies/microbiomeModelingToolbox/.
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Table S1: Sample description DeNoPa cohort, Related to Star Methods 

(EXPERIMENTAL MODEL AND SUBJECT DETAILS)  

  Controls Cases p-value 

Age
a
, mean (sd) 64.37(7.59) 64.00(8.49) 0.86

b 

Female, % 50% 50% 1.00
c 

Length of disease in months
a
, median (interquartile-range) - 12(9-24) - 

BMI, mean(sd)       

Baseline 27.59(4.68) 27.47(5.22) 0.926
 b 

Follow-up 1 27.54(4.96) 28.37(5.07) 0.522
 b 

Follow-up II 28.06(6.10) 27.83(4.69) 0.875
 b 

Serum creatinine, mean(sd)       

Baseline 0.84(0.029) 0.91(0.036 0.136
 b 

Follow-up 1 0.86(0.031) 0.92(0.038) 0.241
 b 

Follow-up II 0.86(0.031) 0.89(0.035) 0.473
 b 

Serum GGT, mean(sd)       

Baseline 35.24(5.01) 39.7(7.67) 0.629
 b 

Follow-up 1 35.7(4.81) 44.97(6.39) 0.251
 b 

Follow-up II 36.37(7.39) 50.21(10.97) 0.300
 b 

Total triglycerides, mean(sd)       

Baseline 120.10(9.29) 117.57(8.86) 0.844
 b 

Follow-up 1 143.91(14.31) 138.90(17.72) 0.827
 b 

Follow-up II 134.17(16.68) 117.89(11.66) 0.427
 b 

Levodopa, %       

Baseline 0% 10% 0.237
c 

Follow-up 1 0% 53.3% <0.001
c 

Follow-up II 0% 83.3% <0.001
c 

3-O-methyldopa levels
d
, mean(sd)       

Baseline 0.18 (0.03) 1.20(0.8) 0.267
 b 

Follow-up 1 0.18 (0.03) 18.79(26.84) <0.001
 b 

Follow-up II 0.19 (0.04) 30.34(28.67) <0.001
 b 

UPDRS score, mean(sd)       

Baseline 1.2(1.73) 29.93(16.55) <0.001
 b 

Follow-up 1 3.47(5.51) 35.83(21.42) <0.001
 b 
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Follow-up II 3.63(3.85) 40.73(21.07) <0.001
 b 

BMI=body mass index, UPDRS=Unified Parkinson Disease Rating Scale, SD=standard deviation, 

GGT=Gamma-glutamyl-transferase 
a
at baseline 

b
p-value from welch t-test (robust against variance inhomogeneity) 

c
p-value from Fisher’s exact test 

d
relative values against internal standard (unit-free) 
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Table S2: Longitudinal description of the UPDRS subscales. Related to Star Methods (EXPERIMENTAL MODEL AND SUBJECT 

DETAILS)  

 

  
Control group Parkinson's disease group 

Scale Description 
Baseline, 

mean(sd) 

Follow-up I, 

mean(sd) 

Follow-up II, 

mean(sd) 
ICC p-val* 

Baseline, 

mean(sd) 

Follow-up I, 

mean(sd) 

Follow-up II, 

mean(sd) 
ICC p-val * 

UPDRS_I nonmotor experiences of daily living .4(.968) .867(1.961) .867(1.252) 0,74 0,02245441 2.233(1.591) 2.733(2.651) 2.867(2.813) 0,42 0,76361817 

UPDRS_II motor experiences of daily living .167(.379) 1.233(2.269) 1.033(1.299) 0,11 0,00495283 7.6(4.256) 9.567(5.532) 11.3(7.023) 0,4 0,02516821 

UPDRS_III motor examination .633(1.066) 1(1.722) 1.1(2.04) 0,31 0,38386512 20(11.99) 21.83(14.02) 23.6(12.90) 0,58 0,25066236 

UPDRS_IV motor complications 0(0) .367(.556) .633(.615) 0,05 0,19991027 .1(.305) 1.7(1.685) 2.967(1.974) 0,27 2,1072E-07 

UPDRS sum total sum of the subscales 1.2(1.73) 3.467(5.507) 3.633(3.855) 0,39 0,00347403 29.93(16.55) 35.83(21.42) 40.73(21.07) 0,55 0,00688026 

 * p-value for change of scores over time from generalized linear (ordered logistic for scales I, II, and IV; linear for III and total sum) mixed effect regression models on sum 

scores with random intercepts for individuals  

UPDRS=Unified Parkinson's Disease Rating Scale, SD=standard deviation, ICC= Intra-class correlation (estimates from mixed effect linear regression models)  
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Table S3: Extended results on associations of taurine conjugated bile acids and histidine with UPDRS scores, Related to Figure 3  

 

OR=odds ratio, CI=confidence interval, SD=standard deviation, BL=baseline, FU1=follow-up I, FU2=follow-up II, UPDRS=Unified Parkinson Disease Rating 

Scale, TLCA=taurolithocholic acid, TCDCA=taurochenodeoxycholic acid, TDCA=taurodeoxycholic acid.  
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Figure S1: PD-specific trajectories over time, Related to Figure 2. A Box plots of log 

transformed metabolite concentrations over the three waves for controls and PD cases. 

Metabolite concentrations are displayed after mean centering per individual, showing 

therefore the intra-individual variation over the waves for controls and PD cases. B Principle 

component analyses of the compounds showing decreasing concentrations over time in PD and no 

specific pattern in controls. C Differences between cases and controls per wave for metabolites with 

significant trajectories.  D Trajectories for the two PCs representing metabolites with decreasing 

values in PD. Both trajectories were PD-specific (PC1: p=3.482e-08, PC2: p=0.0001). FA=fatty 

acids, BL=baseline, FU1=follow-up 1, FU2=follow-up 2, PC=principle component. 

  



6 
 

 

Figure S2: Extended results regarding metabolite-metabolite relations and effects of 

dopaminergic medication, Related to Figure 3. A Altered metabolite-metabolite associations with 

FDR<0.05. The regression coefficients (adjusted for age, sex, wave, group and wave-group interaction terms) 

and their confidence intervals are depicted for each wave, and averaged over all three waves. Adjustment for 

medication includes the levodopa equivalent dosage, pramipexole, rasagiline and levodopa intake. B Scatter 

plots for LPC 16:0 in dependency on homocitrulline, and SM(d18:1/25:0) in dependency on SM(d18:1/25:1) 

with corresponding regression lines stratified for wave. Red indicates control, blue PD. C Combined effects of 

Rasagiline and Pramipexole on alpha-aminobutyrate levels. D Association of levodopa dosages to 

diverse lipids displayed by scatter plots and corresponding regression lines. All associations were 

significant after multiple testing FDR<0.05. SM=Sphingomyelin, LPC=lysophosphatidylcholine, 

TG=triglycerides, LPA=lysphosphatic acid, PC=phosphatidylcholine, BL=baseline, FU1=follow-up 1, 

FU2=follow-up 2.  

  



7 
 

 

 

Figure S3: Extended results of metagenomics analyses, Related to Figure 4. A Secretion potentials 

in transsulfuration pathway from metabolic modeling of metagenomic data. B Secretion potentials in 

dependency on akkermancia municiphila abundance. Red line shows the polynomial fit. 
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