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Figure 1: Ronald S Rivlin [1915-2005]

1. Introduction

Over a long and distinguished career, Ronald Rivlin (1915-2005) pub-
lished more than 200 scientific papers. He was a highly innovative scientist
who made seminal contributions in all areas of continuum mechanics. He was
one of the last savants, equally proficient in solid and fluid mechanics and
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in the mathematical methods needed to advance these disciplines. Although
it was characteristic of scientists at the time of Cauchy and Navier, or even
Poincaré, this spread of knowledge no longer seems possible due to the rapid
expansion of research that has occurred over the last fifty years.

Rivlin was interested not only in developing theories of material mod-
elling but also in their application to real-world problems. Rivlin’s ideas
have therefore attracted the interest of physicists, material scientists, engi-
neers and applied mathematicians. His list of co-authors includes Millard
Beatty (University of Nebraska), Jerald Ericksen (Johns Hopkins Univer-
sity), Alan Gent (University of Akron), Albert Green (Oxford University),
Leonard Mullins (British Rubber Producers’ Research Association), Anthony
Spencer (University of Nottingham), Alan Thomas (University College Lon-
don), Richard Toupin (IBM Thomas J. Watson Research Center). He was
the PhD supervisor of, amongst others, Michael Carroll (Rice University),
Michael Hayes (University College Dublin) and Allen Pipkin (Brown Univer-
sity). Together with Rivlin, the people listed here, along with their students
and collaborators, were at the forefront of the development and application
of Continuum Mechanics.

Continuum Mechanics is a fundamental science at the nexus of mechanics,
engineering science and applied mechanics. Continuum Mechanics flourished
in the aftermath of the Second World War, with its axiomatic approach
and general methodology attracting great attention in the then rapidly ex-
panding universities. Inevitably, after this initial surge of interest, a waning
followed due to the next generation of scientists being forced to concentrate
on narrowrer areas of expertise because of the sheer volume of global research
output. However, over the past twenty years, Continuum Mechanics has ex-
perienced a renaissance, with renewed interest in the field generated by the
need to model nonlinear acoustics, soft matter, biological soft tissues,
and active materials. These complex systems require the methodologies
that are at the core of continuum mechanics, with the result that many sci-
entists from different backgrounds are embracing Continuum Mechanics once
again and the field now has a wide and substantial audience.

Many of the fundamental problems of Continuum Mechanics have been
formulated and substantially advanced by Rivlin. For example, the current
analysis of stability problems in the biomechanics of growth rely on the theory
of the superposition of small deformations on finite deformations initially
developed by Rivlin & Hayes and others. The current interest in modelling
residual stresses relies on the theory of invariants developed by Rivlin and co-
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workers and the analysis of active materials is based on the Rivlin & Carroll’s
formulation. This is just to cite a few of the recent applications of Rivlin’s
theories.

The aims of this theme issue are to broaden the appeal of Continuum
Mechanics and to attract those scientists who appreciate the power of its
problem-solving methodologies but whose background hinders their immedi-
ate appreciation of the technical details.

There is also a historical reason to the timeliness of this thematic issue.
Many of the students of Rivlin have passed away and it is time to collect the
remaining knowledge of the community that was in direct contact with him.
Moreover, it was in the Philosophical Transactions that Rivlin laid down the
mathematics and physics of what is now called Nonlinear Elasticity, with an
impressive series of ten articles published by this journal from 1948 to 1955.

Rivlin’s collected papers were published in 1997 as a two-volume set [1]
and classified under the following topics:

• Isotropic Finite Elasticity?,

• Anisotropic Finite Elasticity?, Kinematic Constraints,

• Superposition of Small Deformations on Finite Deformations in Elastic
Materials?, Stability?,

• Constitutive Equations, Invariants,

• Internal Variables Theories,

• Non-Newtonian Fluids?,

• Electromagnetism?,

• Fracture,

• Waves in Viscoelastic Materials?,

• Crystal Physics,

plus some miscellaneous and general papers.
This issue presents a collection of research and review articles covering

the starred topics above from a modern perspective, and exposes how vibrant
Rivlin’s legacy is.
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2. Historical context

Rivlin operated in a special period in the history of science, which can
considered as a sort of Renaissance of Natural Philosophy.

After the second World War a group of talented mechanicians and mathe-
maticians worked hard at transforming Continuum Mechanics into a Rational
Mechanics programme. Ronald Rivlin and Clifford Truesdell were undoubt-
edly the leaders of this program. In the early days, Rivlin and Truesdell
had cordial relations based on mutual respect but later on their relationship
deteriorated, as some of Truesdell’s followers were encouraged to develop me-
chanics as a pure axiomatic subject in the spirit of David Hilbert. This was
a departure from the spirit of rational mechanics as pursued by Paul Appel
in France or Tullio Levi-Civita in Italy, where the challenge was to com-
bine deep theoretical analysis with concrete practicality. If only this clash of
characters and schools between Rivlin and Truesdell had been avoided, then
Continuum Mechanics would have enjoyed an unassailable advantage in men
and resources.

For a long time it was unclear whether Continuum Mechanics was a dis-
cipline of interest to applied mathematicians only, or to engineers, or to
physicists. It is easy to see why engineers are interested in applications of
fluid and solid mechanics, and why applied mathematicians would be at-
tracted to concepts and tools closely associated with Continuum Mechanics,
such as scaling, dimensional analysis, stability theory, asymptotic analysis,
Fourier methods, homogenisation, Finite Element methods, etc. However,
to this day, the subject of Continuum Mechanics is almost absent from the
typical undergraduate curriculum in Physics. Things are changing quickly
now, as physicists, biologists, material scientists and biomedical researchers
are entering the areas spanned by the subject, with an explosion of research
activity in the modelling, understanding and applications of flowing fluids,
atmospheric circulation, active materials and the behaviour of soft materials
such as dielectrics, membranes, polymeric gels, emulsions, metamaterials and
biological materials.

3. Isotropic Finite Elasticity

The achievements of Rivlin in formulating the theory of isotropic finite
elasticity are unparalleled, so much so that the fundamental model of in-
compressible nonlinear elasticity, the Mooney-Rivlin strain-energy function,
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is named after him. It reads

W = C1(I1 − 3) + C2(I2 − 3), (1)

where C1, C2 are positive constants and I1, I2 are the first two principal
invariants of strain.

The solutions of the canonical boundary value problems obtained by
Rivlin form the basis of many of the developments of the theory (see for
example [2]). Today, many branches of physics and engineering science use
the theory of nonlinear elasticity initiated by Rivlin. A striking current ap-
plication of this theory is its ability to include anisotropy (section 4) and
study the mechanical response of soft tissue and the modelling of the com-
plex interactions between elastic response, anisotropy and residual stresses
[3, 4].

More than 70 years after Rivlin initiated the topic, there is still a huge
research activity and effort devoted to the quest of the strain-energy for
natural rubber. There has been and still is a continuous flow of new models
for rubber coming out in the literature, to be confronted to experimental
data, which is puzzling because a mathematical model must be robust and
general, and cannot rely on a single specific functional form only.

The starting point of the Mooney-Rivlin model can be found in the orig-
inal paper by Mooney [5]:

When a sample of soft rubber is stretched by an imposed tension,
neither the force-elongation nor the stress-elongation relationship
agrees with Hooke’s law. On the other hand, if the sample is
sheared by a shearing stress, or traction, Hooke’s law is obeyed
over a very wide range in deformation. . . . Another simplifying
feature in the elasticity of rubber lies in the fact that deformations
are normally produced without any appreciable change in volume.

Rivlin was able to substantiate this point of view by clarifying several
theoretical and experimental aspects of rubber mechanics. He produced the
mathematical model (1), which “led to the exploration of the nonlinear the-
ory of elasticity in deep and unexpected ways, yielded significative classes
of non-homogeneous exact solutions and provided a new perspective to the
interpretation of experimental data” [6]. Its applicability holds quite widely,
even though the Mooney-Rivlin model is special in several respects. For in-
stance, it is only an example among a huge family of models that possesses
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the requirements given by Mooney [7]; its mathematical structure leads to
predictions that are too restrictive (finite-amplitude transverse waves should
obey linear propagation laws); and the comparison with experiments is good
only for a restricted range of deformation.

In any case the seed was sowed. The highly successful Ogden strain-
energy density function [8] came later and although it seemed to start from
a completely different perspective, it was clearly grounded in Rivlin’s work.
Rivlin’s theory expresses the strain energy function of an isotropic solid in
terms of the first three principal invariants of strain, whereas Ogden uses a
different set of invariants. The difference in choosing Rivlin’s set of invariants
as opposed to another set caused a lot of debate but an artificial controversy,
because in a finite dimensional space, any set of invariants is related to any
other by a bijective map; the only difference generated is akin to a numeri-
cal pre-conditioning of the data (in fact, Rivlin was so concerned with this
contrast that the last two paper he ever wrote in his late eighties were about
the comparison between the Valanis-Landel approach and his own approach
[9, 10].) The Ogden model was the concrete realisation of the power and
potential of the general theory of large deformation isotropic elasticity devel-
oped by Rivlin because it finally became possible to fit accurately theoretical
stress-strain curves to experimental data for a variety of deformations and a
large range of strains.

Today we know much more about this general theory: we have a clear idea
of the numerical turning points in the fitting of the phenomenology theory
with experimental data [11]; we know that the theory is really robust and the
actual functional forms do not really matter [6]; we know how to relate the
phenomenological point of view to the mesoscopic description of polymeric
networks [2]; and so on.

In the present volume we publish a posthumous paper1 by Michael Car-

1This previously unpublished paper was sent to two of us (M. Destrade and G. Sac-
comandi) in 2010. It was intended for a Special Issue of the International Journal of
Engineering Science dedicated to K.R. Rajagopal (Volume 48, Issue 11, 2010). Unfortu-
nately, it was not possible to process the paper then as the source file was corrupted and
some plots were missing. We asked for a definite version but Mike Carroll, who was in ill
health, never replied. Jim Casey (UC Berkeley) also tried to source the original files but
was ultimately unsuccessful. For this issue the three of us pieced together the two versions
of the paper that we had and we reproduced ‘as is’ the various corrupted plots. The paper
was sent by the Philosophical Transactions to two independent anonymous referees and
we took the initiative to implement ourselves the minor revisions they recommended.
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roll (a student of Rivlin), which precisely proposes a refinement of some ideas
connecting phenomenological theory to mesoscopic quantities and structures
of physical interest. The paper tackles a problem that was approached in-
completely during Rivlin’s age. It is well-known that there are two different
approaches to study rubber elasticity: the statistical or kinetic theory ap-
proach, and the phenomenological approach based on the theory of continua.
Because the statistical theory deals with fundamental physical quantities and
the phenomenological theory deals with mathematical assumptions, there is
a common belief that the former is somehow intellectually superior to the
latter. However, we must remember that the statistical mechanics of an
amorphous material is not a completely rigorous discipline, as it relies on a
large amount of ad hoc assumptions. The main discrepancy between the two
approaches lies in the role and importance of the I2 term in the Mooney-
Rivlin model, see (1). Indeed, the standard methods of statistical mechanics
cannot yield a macroscopic model of a polymeric network with a dependence
on the second invariant of the strain. But this dependence is crucial to model
the real-world behaviour of soft matter, and indeed some universal relations
have established general and quantitive measures of the importance and the
need of the I2 dependence [12] (for example, a material with a strain en-
ergy depending on I1 only cannot exhibit the Poynting effect in simple shear
[13].) Trying to reconcile the two attempts was a problem for a long time, see
for example [14] for an evocative title on this subject, and eventually more
sophisticated models of statistical mechanics managed to introduce this de-
pendence in the derivation of the macroscopic model of rubber.

The paper by Carroll was written ten years ago and we must put its sig-
nificance in an updated context. First of all, we point out that the idea used
by Carroll of connecting the phenomenological and the statistical theories is
due to Beatty [15]. Next, we note that there is a large literature devoted to
approximating, as Carroll does, the inverse Langevin function in the context
of rubber elasticity. This function was introduced by Arruda and Boyce [16]
to derive their eight-chain model. The question of a proper approximation
for the inverse Langevin function can be bypassed by an approach à la Gent
[17], which provides a very good approximation of this special function in
several circumstances [18]. Finally, Destrade et al. [6] recently proposed a
detailed discussion and an updating of the present paper by Carroll.
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DEFORMATIONS OF ISOTROPIC MATERIALS. VII 

It was attached, by the end-plates bonded to it, to the circular plate P and a base-plate B, 
as shown in figure 15. A rod R was rigidly attached to P at its centre. The circular plate P 
and rod R weighed about 2kg., and, together with the small trimming weight m, were 
counter-balanced by the load L through the string S passing over a pulley. The pulley was 
located in such a way that the string was vertical between it and the rod R. This method 
of counter-balancing was employed in order to minimize tilting of the plate P when the 
cylinder was subjected to a torque. 

L I 

w P 

&LF 

, . 

w 
FIGURE 15. Experimental arrangement for experiment on torsion of a cylinder. 

A known torque was applied to the rubber cylinder by strings, supporting equal weights 
W, the torque being varied by altering these. The strings were carried in a groove in the 
edge of the circular plate P. 

As the torque was increased from zero, the cylinder elongated, and this elongation was 
observed by noting the rise or fall of two points on the edge of the plate P at opposite ends of 
a diameter, one cathetometer being used to observe each of the points. The plate P was kept 
horizontal, as judged by a bubble level, by suitable placing of the mass m. At each value of 
the applied torque, the magnitude of the counterpoise L which would result in no extension 
of the cylinder was found by measuring the extension and compression for values of L slightly 
greater and less than this value and interpolating. The difference between this value of 
L and that obtained for zero torque gives the value of the thrust - N corresponding to the 
particular value of the applied torque employed. The extensions and compressions were 
taken as the means of those measured with the two cathetometers at diametrically opposed 
points on the rim of the plate. 

At each value of the applied torque, the amount of torsion produced was also measured by 
reading a scale on the edge of the plate P against a fiduciary mark. 

16. RESULTS OF THE EXPERIMENT ON SIMPLE TORSION 

The corresponding values of the applied torque M and amount of torsion i measured in 
the experiment are shown in figure 16, both for the case when the torque is steadily increased 
to its maximum value (curve I) and when it is decreased to zero (curve II). The small 
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deformed into rectangles of identical dimensions, so that this portion of the test-piece was 
substantially in a state of pure homogeneous strain. The ratios of the lengths of the sides of 
the rectangles in their deformed and undeformed states gave the values of the principal 
extension ratios A1 and A2 for the deformation. It was assumed that the forces operative in 
producing the pure homogeneous deformation of the central nine squares were those applied 
by the central three strings on each side of the test-piece, and the forcesf, andf2, defined in 
? 2, were taken as the means of the tensions measured in the central three strings on the 
appropriate sides of the test-piece. This is justified by the preliminary experiments discussed 
in appendix 3 (? 22). 

I !I 
FIGURE 3. Experimental arrangement for experiment on pure homogeneous 

deformation with I1 or 12 constant. 

The method described above for measuring the forces necessary to produce a pure homo- 
geneous strain in a rubber sheet is a modification of that employed by Treloar (1948). It 
has the advantage, from the point of view of the present experiments, of allowing greater 
simplicity in the adjustment of the strains to their desired values. 

In the present experiments the extension ratios A, and A2 were varied together so that II had 
a constant chosen value. The procedure was then repeated for various values of I. Then, A, 
and A2 were varied together so that I2 had a constant chosen value and the procedure was 
repeated for various values of I2. In varying A1 and A2, it was always arranged that A1 should 
decrease steadily while A2 increased steadily. For any value of Al and of I, or I2 the corre- 
sponding value of A2 was determined from graphs of the type shown in figure 2, but plotted 
on a larger scale. It may be noted that with the experimental arrangement described above, 
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Figure 2: Rivlin was a very thorough and astute experimentalist. In one of his ten articles
published from 1948 to 1955 in the Philosophical Transactions, he proposed protocols to
measure the moment and normal force required to twist a rubber cylinder, and to measure
stresses and strains in the bi-axial stretching of a rubber membrane [19].

4. Anisotropic Finite Elasticity

The mark left by Rivlin in nonlinear elasticity is even more significant
when we move from rubber mechanics to biomechanics, with applications in
the mechanics of biological soft tissues and biomaterials [20], of swelling [21]
and of morpho-elasticity [22].

Biomaterials are often reinforced by families of parallel fibers (made for
example of collagen), which calls for the introduction of anisotropy into the
modelling. Here Rivlin played a fundamental role in developing and analysing
the theory of soft anisotropic materials. He was able to treat this problem
from the perspective of the continuum, by introducing anisotropic invariants
in addition to the principal invariants of strain. Current models of fibre-
reinforced materials have now reached a high degree of sophistication in many
applications such as for example the modelling of arteries [23] or skin [24], and
can explain many exotic material behaviours such as the reverse Poynting
effect [25] observed in some fibre-reinforced hydrogels [26].

In this issue, Martine Ben Amar, Pierre Nassoy and Loic Legoff provide
a compelling case for the introduction of finite elasticity models into the
description and understanding of many biological processes. In their review
article, they cover morphogenesis, tissue mechanics, tissue growth, and active
cell mechanics. They go on to explain that there is a great need to work
at scales intermediate between the microscopic (cells) and the macroscopic
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(tissues).
Growth theory is closely related to inelasticity and plasticity theory, as

noted and exploited by Rodriguez et al. [27]. In an opinion piece here,
Miles Rubin proposes an Eulerian formulation of inelasticity which can be
used to model viscoelastic fluids and growth of anisotropic soft biological
tissues. This approach presents an advantage over the Lagrangian formu-
lation, because it allows for arbitrary choices of reference and intermediate
configurations.

In another paper, Anna Pandolfi, Alessio Gizzi, and Marcello Vasta pro-
vide Finite Element simulations to analyse the mechanical response of the
human cornea. They develop and rely on a microstructural model of crosslink
interaction between collagen fibrils, and manage to obtain results and predic-
tions for the localized thinning and bulging typically observed in keratoconus
corneas.

Anisotropy can come in many forms: it can be due to the presence of stiff
fibres embedded into a softer matrix, but also due to the presence of residual
stresses in the material. This type of stress is ubiquitous in nature and can
be the result of a deformation but also of an irreversible process which is very
hard to model (temperature or plastic changes, growth, remodelling, ageing,
etc.) In this theme issue, Davide Riccobelli, Abramo Agosti and Pasquale
Ciarletta look at a constitutive modelling of this type of anisotropy with a
strain energy density depending on both the deformation gradient and the
initial stress tensor. In this modelling, the residual stress is given without
reference to its origin or generation, and physically-based restrictions are
imposed and analysed on the strain energy function.

5. Superposition of Small Deformations on Finite Deformations,
Stability

There is a strong connection between the theory of “Small deformations
superimposed on finite deformations” and the study of Stability.

Stability theory is a difficult topic in any field of mechanics. Classical
Mechanics shows how subtle the concepts of stability are. In Continuum
Mechanics, much has been done on stability in Fluid Mechanics, in contrast
to the study of stability in solids, where very little general progress can be
achieved due to the huge variety of constitutive laws available. One way
to provide generality is to study universal solutions of nonlinear elasticity
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and to then linearise the equations in the neighbourhood of the large solu-
tion. This is the essence of Rivlin’s small-on-large method: once a family
of small-amplitude solutions is found, it can be argued that Euler’s criterion
of instability is met [28]. This approach was pioneered by Green and Zerna
[29], Biot [30] and Rivlin & Hayes [31]. In this issue, Hamza Alawiye, Ellen
Kuhl and Alain Goriely follow this tradition by looking at the wrinkling that
occurs on the surface of a compliant half-space covered with a stiffer layer.
They are able to derive the conditions for surface instability when the de-
formation is driven by applied compressive forces and also by growth, for a
large variety of boundary and material effects.

Or course there are many other criteria for instability in nonlinear elas-
ticity, and nice connections to be made with the topics of energy, convexity,
infinitesimal stability, strong ellipticity, and uniqueness. For instance, the
study of the “Rivlin cube” problem reveals that at least seven equilibrated
homogeneous deformations exist when equal dead loads are applied on the six
faces of a neo-Hookean cube, some stable, some unstable [32]. In this collec-
tion, Angela Mihai, Thomas Woolley and Alain Goriely revisit the problem
of Rivlin’s cube by considering its stochastic version – in the sense that the
elastic parameters are random variables because of uncertainties – and look
at the effects of stochasticity on bifurcation diagrams.

6. Non-Newtonian Fluids

Rivlin took a two-step approach to study non-Newtonian fluids. First he
investigated the equivalence between non-Newtonian fluids and turbulence
theory; then he considered secondary flows. Since then, the explosion of
computational methods and tools in Fluid Mechanics seems to have rendered
analytical methods and the key role of modelling almost redundant, but an
analytical path [33, 34] based on Rivlin’s approach surely needs reviving.

The connection between non-Newtonian fluids and turbulent flows has
generated a long discussion with origins tracing back to the early papers of
Rivlin in 1947. However, even the more recent nonlinearly dispersive Navier-
Stokes-alpha (NS-α) model of incompressible fluid turbulence (also called the
viscous Camassa–Holm equations) makes a link [35] with the second-grade
fluid theory of Rivlin and co-workers.

The starting point of secondary flow studies is a paper by Serrin and
Fosdick [36], showing that secondary flows are necessary in general situations
for fluids. A parallel effort can be found in elasticity [37] and in turbulent
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flows [38]. In fact secondary motions are more ubiquitous than was envisaged.
The semi-inverse method championed by Rivlin to find analytical solutions to
the field equations of Continuum Mechanics gives rise to many compatibility
problems and opens the door to many perturbative schemes connected with
the appearance of secondary deformations or motions.

In this thematic issue, Juan Gomez-Constante and Kumbakonam Ra-
jagopal study the flow of a certain type of non-Newtonian fluids in tubes of
elliptic and other non circular cross-sections. They set out to determine the
velocity field and the stresses generated at the tube’s boundary. They also
provide a critical appraisal of Rivlin’s work in this area.

7. Electro-Magnetism

Rivlin’s work on electro-magnetism forms the basis of our modern under-
standing of soft electro-active materials, which are of singular current interest
both in academia and industry, with potential applications as soft robots,
artificial muscles, energy harvesters, and flexible electronics. The rigorous
modelling of these materials is partly based on the foundations developed by
Rivlin and his coworkers more than 50 years ago.

For a long time confined to modelling hard electro-active materials, the
subject has undergone a revival in the past 15 years or so, due to the availabil-
ity of inexpensive soft dielectric membranes capable of very large mechanical
actuations when subject to large voltages. Their applicability is still limited
because the voltages required are in the tens of thousands of volts. To reduce
the voltage, one can reduce the thickness of the membrane, now typically in
the order of the millimetre or less. However, as the membrane expands with
the actuation, its thickness reduces by incompressibility and electrical break-
down becomes a real and common threat. In this volume, Luis Dorfmann
and Ray Ogden use the theory of incremental elasticity (small-on-large, see
section 5) to study the stability of thin electro-active plates and of a thin-
walled tube made of an electro-elastic material. They analyse in turn the
possibility of electro-mechanical breakdown due to the Hessian matrix as-
sociated with the free energy of the system losing its positive definiteness,
or due to the appearance of small-amplitude inhomogeneous wrinkles on the
faces of the plates and tube.
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8. Waves in Viscoelastic Materials

Elastic wave propagation in solids has a long history, especially in the
acoustics of crystals. In the early part of the 20th Century, attention turned
to waves travelling in a deformed solid, and thus subject to strain-induced
anisotropy. Here some great progress was made by Hadamard [39] and by
Brillouin [40]. The former constructed a model for the Aether, which al-
lows for any plane homogeneous wave of arbitrary amplitude to propagate
in every direction once the medium is deformed homogeneously. The lat-
ter established the general equations of acousto-elasticity, which connects
a pre-deformation (or equivalently, a pre-stress) to small-amplitude elastic
wave propagation; specifically, he treated the problem of homogeneous plane
waves in a general elastic solid of infinite extend, subject to a small pre-
deformation (‘small-on-small’, so to speak).

Rivlin and Hayes [31] were able to go further, by looking at surface
Rayleigh and Love waves on elastic half-spaces subject to large pre-strains.
They also looked at the implications of having a real speed of propagation,
and ensuring it is not zero, for strong ellipticity and stability (see section 5).
Their papers are still used to this day in geophysics and in non-destructive
evaluation of strained hard solids, see for instance the Handbooks [41, 42].
However, it is only recently that their formulas (or rather, their modern ver-
sion, due to Chadwick and Ogden [43]) have been used experimentally for
soft matter, in parallel with the development of imaging techniques of ul-
trasonic shear wave elastography, based on the elastic Cherenkov effect in
isotropic [44] and anisotropic [45] soft gels and tissues.

In the present compilation, Guo-Yang Li, Zhao-Yi Zhang, Yang Zheng,
Jialin Qian, Wenli Liu, Huijuan Wu and Yanping Cao present an in-depth
investigation of surface wave propagation based on ultrasonic elastography.
The difficulty is that their medium, a soft gel, presents strong heterogeneity
with depth, as can be expected in several natural and engineering settings.
They are nonetheless able to provide a complete theoretical, computational
and experimental treatment of the problem.

In another article, Will Parnell and Riccardo De Pascalis also look at
small-amplitude waves in inhomogeneous solids. They include the effects of
viscosity, pre-stress and homogeneisation, to study how solids can be designed
to behave as metamaterials for acoustic waves.
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