

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the published version when available.

Title	Influence of acyl groups on glucopyranoside reactivity in Lewis acid promoted anomerisation
Author(s)	Farrell, Mark P.; Doyle, Lisa M.; Murphy, Paul V.
Publication Date	2018-05-26
Publication Information	Farrell, Mark P., Doyle, Lisa M., & Murphy, Paul V. (2018). Influence of acyl groups on glucopyranoside reactivity in Lewis acid promoted anomerisation. Tetrahedron Letters, 59(28), 2726-2731. doi: https://doi.org/10.1016/j.tetlet.2018.05.076
Publisher	Elsevier
Link to publisher's version	https://doi.org/10.1016/j.tetlet.2018.05.076
Item record	http://hdl.handle.net/10379/15195
DOI	http://dx.doi.org/10.1016/j.tetlet.2018.05.076

Downloaded 2024-05-18T14:13:47Z

Some rights reserved. For more information, please see the item record link above.

Graphical Abstract

Influence of acyl groups on glucopyranoside reactivity in Lewis acid promoted anomerisation

Mark P. Farrell, Lisa M. Doyle and Paul V. Murphy*

School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland, H91 TK33

Abstract: Lewis acid promoted anomerisation has potential in O- or S-glycoside synthesis. Herein, the anomerisation kinetics of thirty one β -D-glucopyranosides was determined to determine how particular acyl protecting groups and their location influence reactivity towards a Lewis acid promoted reaction. The replacement of acetyl groups with benzoyl groups led to reduced reactivity when located at O-3, O-4 and O-6. However a reactivity increase was observed when the acetyl group was replaced by a benzoyl group at O-2. The 2,3,4,6-tetra-O-(4-methoxy)benzoate had an ~2 fold increase in rate when compared to the tetrabenzoate.

1. Introduction

Reactions at the anomeric centre are influenced by a variety of factors. For instance, in glycosylation, protecting groups on saccharide hydroxyl groups influence the stereochemical outcome as well as the reaction rate.¹ Differences in glycosylation rate can be exploited in reactivity based oligosaccharide synthesis in one pot.² Acyl protecting groups are considered 'disarming' in such glycosylation reactions when compared with ether protecting groups, such as benzyl ethers.³ This is because the acyl group is more electron withdrawing than the ether and reduces the stability of transition states leading to cationic intermediates⁴ resulting from exocyclic cleavage in these reactions.

Reactivity in Lewis acid promoted anomerisation^{5,6,7} is also influenced by protecting groups,^{8,9} a reaction that is believed to proceed via a cationic intermediate resulting from endocyclic cleavage^{10,11} (Scheme 1). Acyl groups located on the saccharide oxygen atoms reduce the rate of these reactions compared to when ether groups are present.^{6,8} Furthermore, there are differences between acyl groups. Tetra-O-benzoyl- β -D-glucopyranoside 2β is more reactive than the corresponding tetraacetate 1β . Based on inductive effects the presence of benzoyl groups would destabilize a cationic intermediate more than acetyl groups. However, the use of benzoylated reactants has been more successful, giving higher yields and shorter reaction times in equatorial to axial anomerisation reactions compared to reactions of the analogous acetylated reactants. This has been demonstrated in glycosphingolipid synthesis achieved via Lewis acid promoted anomerisation,^{12,13} and more recently in the successful anomerisation of benzoylated glycosyl thiols.¹⁴

In this paper the influence of acyl groups on the reactivity of a Lewis acid promoted anomerisation reaction of a series of *O*-glucopyranosides is probed further with a view to identification of protecting group strategies that would lead to wider application of anomerisation.^{15,16,17,18,19,20,21,22} A variety of acyl protected glucopyranosides are prepared herein and a structure reactivity relationship is established. Here we report that the presence of benzoyl groups at C-2 of the β -glucopyranoside generally leads to a rate enhancement in the anomerisation reaction, while benzoyl groups at C-3, 4 or 6 lead to rate reduction when compared to the presence of acetyl groups at these positions. However, the replacement of all four acetyl groups with benzoyl groups gave the highest reactivity. Other tetra-*O*-acyl derivatives with improved reactivity compared to tetra-*O*-benzoyl groups are also reported.

Scheme 1. Proposed mechanism for the Lewis acid promoted anomerisation of glucopyranosides

2. Results and Discussion

2.1 Synthesis of compounds for study

The preparation of monobenzoylated compounds was first investigated (Scheme 2). Thus Zemplén deacetylation of 1β , which has been described previously⁷ gave **3**. Reaction of **3** with benzaldehyde dimethyl acetal in the presence of *p*TsOH gave **4**. Acetylation gave **5**. The oxidative cleavage of the benzylidene group using NaBrO₃-Na₂S₂O₄ under bi-phasic conditions, followed by acetylation, resulted in the formation a separable mixture, giving **6** β (54%).and **7** β (25%). The application of biphasic NaBrO₃-Na₂S₂O₄, described by Adinolfi and coworkers,²³ was used frequently herein for the successful removal of benzyl groups as well as partial oxidative cleavage of benzylidene groups.

Next the benzylation of **4** (Scheme 3) under the biphasic alkali conditions previously reported by Garegg and co-workers²⁴ gave a mixture of **8** and **9** which were isolated in 39% and 17% yields, respectively. Benzoylation, followed by catalytic hydrogenolysis and subsequent acetylation gave **10** β and **11** β in 73% and 66% yields, respectively, over the three steps from **8** and **9**.

Scheme 2. Synthesis of 6β and 7β

Scheme 3. Synthesis of 10β and 11β

Attention turned to the preparation of compounds with two or three benzoate groups (Schemes 4-6). Partial oxidative cleavage of **5** and subsequent benzoylation gave **12** β (62%). Benzoylation of **4** was followed by acid catalysed cleavage of the benzylidene acetal in CH₂Cl₂-MeOH and acetylation to give **14** β .

Scheme 4. Synthesis of 12β and 14β

Acid catalysed cleavage of the benzylidene group from both 8 and 9 and their subsequent benzoylation gave 15 and 16. Oxidative removal of the benzyl groups with NaBrO₃-Na₂S₂O₄ proceeded smoothly and subsequent acetylation gave 17 β and 18 β .

Scheme 5. Synthesis of 17β and 18β

Partial oxidative cleavage of the benzylidene group of 13 gave a mixture of 19 and 20. Subsequent acetylation gave 21β and 22β .

Intermediate 23, prepared from 9 (Scheme 7) was treated with NaH and methyl iodide to give 24. The benzyl group of 24 was then removed to give 25. Acylation of 25 gave 27β - 30β . The tetra-*O*-methyl derivative 26β was prepared as previously described.⁸

Scheme 7. Synthesis of 27β-30β

Partial reductive cleavage of the benzylidene group of 13 using methanesulfonic acid (MSA) and NaBH₃CN resulted in the regioselective formation of 31. Benzoylation gave 32. Oxidative removal of the 6-*O*-benzyl ether followed by acylation gave 33β-36β (Scheme 8) where as various peracylated compounds 37β -46β were prepared by peracylation of 32 in pyridine-DMAP (Scheme 9).

2.2 Reactivity study

With various reactants in hand then Lewis acid catalysed anomerisations were investigated.⁷ Reactions were carried out in NMR tubes with CDCl₃ as the solvent and using 1 equivalent of SnCl₄ as the promoter. Concentrations of reactant (β -anomers in Table 1) and the major product (α -anomer) were monitored as a function of time and were also measured at equilibrium (when no further change in the concentration of reactant and products were observed). The data obtained was used in equation (1) for equilibrium kinetics:²⁵

$$\ln\left(\frac{[A]_{0} - [A]_{e}}{[A]_{t} - [A]_{e}}\right) = -(k_{f} + k_{r})t \quad (1)$$

where $[A]_0$ is the initial concentration of the β -anomer, $[A]_e$ is the concentration of the β anomer at equilibrium, $[A]_t$ is the concentration of the β -anomer at a time (t), k_r is the rate constant of the forward reaction ($\beta \rightarrow \alpha$) and k_r is the rate constant of the reverse reaction ($\alpha \rightarrow \beta$). Each reaction was carried out in triplicate and the data for all reactants in Table 1 gave linear plots with r^2 values of 0.97 or greater. The k_r+k_r value for each reactant was the slope and these values are given in Table 1 along with relative reactivities.

Scheme 8. Synthesis of 33β-36β

Scheme 9. Synthesis of 37β-46β

In this kinetic study the SnCl₄:reactant ratio used was 1:1. This differed from the earlier study from our laboratory where a ratio of SnCl₄:reactant of 0.5:1 was used.⁸ The 1:1 ratio was used to reduce the overall reaction time so as to more rapidly obtain $k_{\rm f}+k_{\rm r}$ values. This explains differences in the $k_{\rm f}+k_{\rm r}$ values reported for **1** β , **2** β and **26** β in this study with those reported previously. In the previous study **2** β was ~4 fold faster than **1** β whereas it was ~2 fold faster using the current conditions. However, the trend in $k_{\rm f}+k_{\rm r}$ values was consistent with those published earlier, with fully benzoylated reactant **2** β being faster than the acetylated **1** β . The fully methylated derivative **26** β was more than two orders of magnitude faster than both acylated compounds.

On the basis of inductive effects (pKa benzoic acid = 4.20 vs pKa acetic acid = 4.76) the anomerisation of benzoylated reactant 2β would be expected to be slower than 1β .²⁶ The presence of benzoyl groups at C-3, C-4 and C-6, instead of acetates, in various monobenzoylated, dibenzoylated and tribenzoylated reactants, consistently led to a reduction in the rate of anomerisation (compare each of entries 3-5, 7 and 9 with 1). In contrast, the presence of a benzoyl group at C-2 generally led to rate increases (compare entry 6 with 1; 8 with 5; 10 with 7 and 9 with 2). The replacement of the 2-*O*-acetate of 17β (Entry 9) to give 2β led to the highest increase (four fold) in reactivity (Table 1, entries 1-12).

The tetra-*O*-methylated **26β** is over 600 times more reactive than fully acylated **1α** under these conditions. Replacement of the 2-*O*-methyl group with an acyl group led to a reduction in the rate of anomerisation (Entries 13-17). However, the 2-*O*-benzoate **28β** (Entry 15) was 1.3 times more reactive than 2-acetate **27β** (Entry 14). The more electron withdrawing *p*-fluorobenzoate **29β** reduced the rate (Entry 16) whereas the 2-*O*-pivalate **30β** was most reactive of the 2-*O*-acyl-3,4,6-tri-*O*-methyl-β-D-glucopyranosides **27-30β**.

The next series of compounds give insight into the effect of substituents at C-6, chosen for investigation due to its proximity to the proposed site of coordination to SnCl₄ (Entries 18-21). There was no clear trend apparent based on electronic properties, although the *p*-methoxy derivative was the most reactive. Finally, the study of homoacyl glucopyranosides (Entries 22-31) revealed the most improvement in reactivity for the 2,3,4,6-tetra-*O*-(4-methoxy)benzoate **42** β (Entry 27), which is associated with the **Table 1** Reactivity of compounds in SnCl₄ promoted anomerisation^{*a*}

greater electron releasing properties of the *p*-methoxy benzoyl group, compared to the benzoyl group.

3. Summary and Conclusions

Relatively low reactivity differences (e.g. 2 fold) between fully acetylated or fully benzoylated glycosides can influence reaction progression and yields from anomerisation reactions. This is more noticeable during the preparation glycosphingolipids, where the aglycon is more complex. Hence, synthetic routes have been developed herein that have enabled regioselective acylation of glucopyranosides in order to gain insight how the location of the acyl group influences reactivity. The study showed that placement of benzoyl groups at O-2 led to an increase in reactivity, but to reduction when placed elsewhere, the exception being that the presence of four benzoates gave the highest reactivity. The latter could be influenced by steric hindrance with more crowding in the 2β than for examples in entries 1 and 3-12 in Table 1. This crowding pushes the 2-carbonyl group closer to the carbocation centre where it can stabilize the forming cation.

While this study has focused on anomerisation, a 2-O-benzoyl group was shown to increase reactivity in a glycosylation reaction,²⁷ this being explained by the benzoyl group being involved in neighboring group participation. However, a rate enhancing effect for a 2-O-benzoate group may not be a general phenomenon in glycosylation.¹ In anomerisation involving a cationic intermediate, the 2-O-benzoyl group could also participate as a neighboring group. The degree of participation could be increased, as mentioned due to increased steric hindrance. The presence of the phenyl group also enables a resonance contribution from the 2-O-benzoyl group. This might explain why 2β is faster than the sterically hindered tetra-O-pivalylated derivative **39β**. The use of a more electron releasing pmethoxybenzoyl group increased reactivity, which is consistent with increased stabilization of carbocation formation in a rate influencing step.28

A further study which has the aim to increase the understanding of why benzoates are more reactive in anomerisation reactions is in progress and this study will be reported in due course.

Acknowledgments

This publication has partly emanated from research supported by Science Foundation Ireland (SFI, grant number 12/IA/1398) and is co-funded under the European Regional Development Fund under Grant Number 14/SP/2710. The authors thank the Irish Research Council and Roche Ireland Ltd for an Enterprise Partnership postgraduate scholarship to MPF.

Supplementary Material

Experimental section including analytical data for compounds and selected NMR spectra.

Entry Reactant (β-anomer) Major product (α-anomer) $10^{6}(k_{\rm f} + k_{\rm r})$ (s⁻¹) Relative Reactivity Ratio α:β Yield α-anomer (%)

1	AcO OBu ACO 16 OAc		7.6	1	9:1	64
2	$BzO \\ BzO \\ 2\beta OBz \\ OBz$	$B_{ZO} = \frac{OB_Z}{B_{ZO}} = \frac{OB_Z}{B_{ZO}} = \frac{OB_Z}{OB_U}$	15.7	2.07	95:5	72
3	AcO AcO 6β OAc	$AcO \rightarrow OBz$ $AcO \rightarrow OBu$ $6\alpha OBu$	6	0.79	92:8	81
4	BZO - CORU - C	BzO - OAc = OAC	7.1	0.93	89:11	76
5	AcO BzO 10 βOAc	AcO BzO 10 $AcO $ OBu	7.2	0.95	93:7	73
6	ACO O O O O O O O O O O O O O O O O O O	AcO AcO 11α BzO OBu	8.6	1.13	9:1	61
7	BzO AcO 12β OAc	BzO AcO 12α AcO OBu	4.6	0.61	92:8	84
8	AcO BZO 14β OBz	A_{cO} B_{ZO} $14\alpha^{BZO}$ OBu	8.5	1.12	88:12	61
9	BzO BzO 17β OAc	BzO OBz OBz OBz OBz OBz OBz OBz OBz OBz	3.7	0.49	9:1	54
10	BzO AcO 18 β OBz	BzO AcO 18α ^{BzO} OBu	6.2	0.82	91:9	67
11	BzO BzO 21α OBz	BzO BzO 21α ^{BzO} OBu	6.6	0.87	9:1	83
12	AcO BZO 22 α OBz OBu	AcO BZO 22α BZO OBu	5.6	0.74	89:11	70
13	MeO MeO MeO 26 β OMe		4676	615	96:4	72
14	MeO MeO 27β OAc	$MeO \rightarrow OMe \\ MeO \rightarrow O \\ MeO \rightarrow O \\ MeO \rightarrow OBu $	3088	406	92:8	74
15	MeO MeO MeO 28β OBz		4088	538	95:5	71
16	MeO MeO 29β OPFBz	MeO <u>BeO</u> <u>29</u> a ^{PFBZO} OBu	1854	244	95:5	52
17	MeO MeO MeO 30 β OPiv	MeO MeO 30 α PivO OBu	4386	577	94:6	84

Enter:	Deactant	in SnCl ₄ promoted anomerisa	$\frac{10^{6}(l_{r}+l_{r})(c^{-1})}{10^{6}(l_{r}+l_{r})(c^{-1})}$	Palativa Dacativita	Datio and	Vield of a
Entry	Keactant		$10^{\circ}(k_{\rm f}+k_{\rm r})~({\rm S}^{*1})$	Relative Reactivity	κatio α:β	r ield of α- anomer (%)
18	BzO BzO 33 β OBz	BzO BzO 33 α BzO OBu	6.9	0.91	9:1	41
19	BzO BzO 34β OBz	$BzO \\ BzO \\ 34\alpha BzO \\ OBu \\ $	10.4	1.37	96:4	66
20	BzO BzO 35β OBz	OPCBz BzO 35g BzO OBu	8.2	1.08	93:7	73
21	BzO BzO 36 β OBz	BZO BZO 36a ^{BZO} OBu	5.8	0.76	85:15	62
22	$\begin{array}{c} 0 \\ EtCO \\ EtCO \\ 0 \\ 0 \\ 37\beta \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	COCEt EtCO EtCO EtCO EtCO Βτισο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο	8.3	1.09	90:10	66
23	Ο iPr-CO iPr-CO iPr-CO iPr-CO O 38β O O O O O O O O O O O O O	(iPr)-CO (iPr)-CO (iPr)-CO iPr-CO 38a 0 0 38a 0	9.4	1.24	92:8	76
24	PivO PivO 9ivO 39 β OPiv	Pivo Pivo 39 a ^{PivO} OBu	10.1	1.3	95:5	81
25	PCBzO PCBzO PCBzO 40β OPCBz	PCBzO PCBzO 40α PCBzO OBu	6.2	0.82	95:5	61
26	PFBzO PFBzO PFBzO 41β OPFBz	PFBzO PFBzO 41α ^{PFBzO} OBu	7.2	0.95	90:10	49
27	pMeBzO pMeBzO pMeBzO 42 β OpMeBz	pMeBzO pMeBzO 42α pMeBzO OBu	27.9	3.67	92:8	57
28	PMBzO PMBzO PMBzO 43β OPMBz	PMBzO PMBzO 43a PMBzO OBu	31.1	4.1	95:5	61
29	PTBBZO PTBBZO PTBBZO 44β OPTBBZ	PTBBZO PTBBZO 44a PTBBZO OBU	27.0	3.55	94:6	51
30	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2NapCO \\ 2NapCO \\ 2NapCO \\ 0 \\ 45\beta \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	2NapCO 2NapCO 2NapCO 2NapCO 2NapCO 45a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12.5	1.64	9:1	48
31	0 1NapCO 1NapCO 1NapCO 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 -1Nap 0 -1Nap 0 -1Nap 0 -1Nap 0 -1Nap 0 -1Nap 0 -1Nap 0 -1Nap 0 -1Nap 0 -1Nap 0 -1Nap 0 -1Nap 0 -1Nap 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	21.6	2.84	95:5	45

^{*a*} The yield reported is the isolated yield after chromatographic separation. PMBz = p-methoxybenzoyl; 2-Nap = 2-naphthyl; 1-Nap = 1-naphthyl; PTBBz = p-(*tert*-butyl)benzoyl; *p*-MeBz = *p*-methylbenzoyl; PFBz = *p*-fluorobenzoyl; PCBz = *p*-chlorobenzoyl; Piv = trimethylacetyl or pivalate.

References and notes

- 1. ¹ Poulsen, L. T.; Heuckendorff, M.; Jensen, H. H. *Org. Biomol. Chem.* **2018**, *16*, 2269 and cited references.
- ² Zhang, Z; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H., *J. Am. Chem. Soc.* **1999**, *121*, 734.
- 3. ³ Fraser-Reid, B.; Lopez, C. Top. Curr. Chem. 2011, 301, 1.
- ⁴ Martin, A.; Arda, A.; Désiré, J.; Martin-Mingot, A.; Probst, N.; Sinaÿ, P.; Jiménez-Barbero, J.; Thibaudeau, S.; Blériot, Y. *Nature Chem.*, 2015, 8, 186.
- ⁵ (a) Pascu, E. Berichte der Deutschen Chemischen Gesellschaft, 1928, 61, 137. (b) Pacsu, E. J. Am. Chem. Soc. 1930, 52, 2563.
- ⁶ For a review on anomerisation up to the year 2000 see: Koto. S. Degradation and rearrangement reactions, In Glycoscience – Chemistry and Chemical Biology, B. Fraser-Reid, K. Tatsuta, J. Thiem (Eds), 785, Springer-Verlag, Berlin Heidleberg New York 2001.
- ⁷ For a recent review see Murphy, P. V. Carbohydr. Chem. 2016, 41, 90.
- 8. ⁸ Pilgrim, W.; Murphy, P. V J. Org. Chem. 2010, 75, 6747.
- ⁹ (a) Tosin, M.; Murphy, P. V. Org Lett, 2002, 4, 3675. (b) Poláková, M.; Pitt, N.; Tosin, M.; Murphy, P. V. Angew Chem Int Ed 2004, 43, 2518. (b) O' Brien, C.; Poláková, M.; Pitt, N.; Tosin, M.; Murphy, P. V. Chem. Eur. J. 2007, 13, 902.
- 10. ¹⁰ Lindberg, B. Acta Chem. Scand. **1949**, *3*, 1153.
- 11. ¹¹ Koto, S.; Morishima, N.; Kawahara, R.; Isikawa, K.; Zen, S. *Bull. Chem. Soc. Jpn.* **1982**, *55*, 1092.
- ¹² (a) Pilgrim, W.; O'Reilly C.; Murphy, P. V. *Molecules*, **2013**, *18*, 11198. (b) McDonagh, A. W.; Murphy, P. V. *Tetrahedron*, **2014**, *70*, 3191. (c) O'Reilly, C.; Murphy, P. V. *Org. Lett.* **2011**, *13*, 5168. (d) Pilgrim W.; Murphy, P. V. *Org. Lett.* **2009**, *11*, 939. (e) McDonagh, A. W.; Mahon M. F.; Murphy, P. V. *Org. Lett.* **2016**, *18*, 552.
- 13. ¹³ Deng, S.; Mattner, J.; Zang, Z.; Bai, L.; Teyton, L.; Bendelac, A.; Savage, P. B. *Org. Biomol. Chem.* **2011**, *9*, 7659.

- ¹⁴ Doyle, L. M.; O'Sullivan, S.; Di Salvo, C.; McKinney, M.; McArdle P. Murphy, P. V. Org. Lett. 2017, 19, 5802.
- 15. 15 Crich, D.; Vinod, A. U. J. Org. Chem. 2005, 70, 1291.
- 16. 16 Wang, Y.; Cheon, H. S.; Kishi, Y. Chem. Asian J. 2008, 3, 319.
- 17. 17 Wei, P.; Kerns, R. J. J. Org. Chem. 2005, 70, 4195.
- 18. 18 Manabe, S.; Ishii, K.; Ito, Y. J. Am. Chem. Soc. 2006, 128, 10666.
- 19 Rasmussen, M. R.; Marqvorsen, M. H. S.; Kristensen, S. K.; Jensen, H. H. J. Org. Chem. 2014, 79, 11011.
- 20. Vidadala, S. R.; Pimpalpalle, T. M.; Linker, T.; Hotha, S. Eur. J. Org. Chem. 2011, 2426
- 21. 21 Tang, Y.; Li, J.; Zhu, Y.; Li, Y.; Yu, B. J. Am. Chem. Soc. 2013, 135, 18396.
- 22. 22 Geng, Y.; Zhang L.-H.; Ye, X.-S. Chem. Commun. 2008, 597.
- 23. ²³ Adinolfi, M.; Barone, G.; Guariniello, L.; Iadonisi, A. *Tetrahedron Lett.* **1999**, *40*, 8439.
- 24. ²⁴ Garegg, P. J.; Iversen, T.; Oscarson, S. *Carbohydr. Res.* **1976**, *50*, C12.
- ²⁵ (a) I. Tinoco; K. Sauer, J. C. Wang, J. D. Puglisi, *Physical Chemistry, Principles and Applications in Biological Sciences*, 4th Edition, Prentice Hall, New Jersey, 2002. pp 315. (b) Delley, D. G., Marchaj, A., Bakac, A., Expenson, J. H. *J. Am. Chem. Soc.* 1991, 113, 7583.
- ²⁶ Serjeant, E. P.; Dempsey, B. Ionization Constants of Organic Acids in Aqueous Solution, Pergamon, Oxford, 1979.
- ²⁷ Premathilake, H. D.; Mydock, L. K.; Demchenko, A. V. J. Org. Chem. 2010, 75, 1095.
- ²⁸ For effects of 2,3-trans carbamate protecting groups on anomerisation see: (a) Manabe, S.; Satoh, H.; Hutter, J.; Lothi, H. P.; Laino, T.; Ito, Y. *Chem. Eur. J.* **2014**, *20*, 124-32. (b) Manabe, S.; Ito, Y. *Pure Applied Chem.* **2017**, *89*, 899.