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ABSTRACT
Graph feature models facilitate efficient and interpretable predic-

tions of missing links in knowledge bases with network structure

(i.e. knowledge graphs). However, existing graph feature models—

e.g. Subgraph Feature Extractor (SFE) or its predecessor, Path Rank-

ing Algorithm (PRA) and its variants—depend on a limited set of

graph features, connecting paths. This type of features may be

missing for many interesting potential links, though, and the exist-

ing techniques cannot provide any predictions at all then. In this

paper, we address the limitations of existing works by introducing

a new graph-based feature model – Distinct Subgraph Paths (DSP).

Our model uses a richer set of graph features and therefore can

predict new relevant facts that neither SFE, nor PRA or its variants

can discover by principle. We use a standard benchmark data set

to show that DSP model performs better than the state-of-the-art

– SFE (ANYREL) and PRA – in terms of mean average precision

(MAP), mean reciprocal rank (MRR) and Hits@5, 10, 20, with no

extra computational cost incurred.
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1 INTRODUCTION
Large scale knowledge graphs (i.e. graph-structured knowledge

bases) have been used as convenient means for modelling informa-

tion in many different domains, including general human knowl-

edge [12], biomedical information [4] and language lexical infor-

mation [15]. Knowledge graphs are now used by different applica-

tions such as enhancing semantics of search engine results [22, 26],

biomedical discoveries [18], or powering question answering and
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Figure 1: A sample of a graph about people and their profes-
sions.

decision support systems [5]. Despite the huge volume of informa-

tion stored in knowledge graphs, they are still incomplete [23]. For

example, 65% to 99% of entities in most of the popular knowledge

bases like Freebase [1] and YAGO3 [14] lack at least one property

possessed by all other entities in the same class [23]. Incompleteness

of knowledge bases can substantially affect the efficiency of systems

relying on them, which has motivated research in knowledge base

completion via automatic prediction of new, implicit facts.

This work addresses a family of knowledge base completion

models known as graph feature models, which use graph patterns

as features. One of the early models in this family is Path Ranking

Algorithm (PRA) [10], which uses paths connecting pairs of nodes

as indicating features for predicting new direct links between nodes.

For example, in Fig. 1, PRA can predict the fact that Tedd is play-

ing for TeamX using the path ⟨colleague,plays_for⟩ along with the

path ⟨practise,practise−1,plays_for⟩ where practise−1 is the inverse
of relation practise. PRA extracts these connecting path features

using random walks linking the subject and object nodes. Then, it

uses each random walk probability as a value in a feature vector

corresponding to the subject and object. This technique is able to

provide expressive prediction for new facts. However, it suffers from

low efficiency, and high computational cost of computing random

walk probabilities. An extension of PRA uses backward random

walks [11] to extract paths originating from object and reaching the

subject node like the path ⟨plays_for−1,colleague−1⟩ in Fig. 1, which

resulted in an efficiency improvement over traditional PRA path fea-

tures. Other extensions suggest using latent feature representations

as a support, like latent syntactic cues [8] which introduces a latent

feature representation of combination of relations to infer new ones.

Another approach suggests incorporating similarity between latent

representation of relations as support features for knowledge base

completion [9], leading to significant efficiency improvements for

models based on random walk inference. However, they suffer from

the same computational problems as for PRA. Later, Neelakantan et

https://doi.org/10.1145/3167132.3167346
https://doi.org/10.1145/3167132.3167346
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al. introduce path bigram features [19] for connecting paths. This

work leads to significant improvement in the efficiency of PRA.

Furthermore, Subgraph Feature Extraction (SFE) [7] – the state of

the art model – drops random walk probabilities, and uses a binary

representation of paths. SFE also proposes using ANYREL features,

which is a set of subgraph paths built from connecting paths by

replacing relation instances with a wild card. This supports a richer

representation of connecting paths, allowing for more intersections

of similar connecting paths through the ANYREL wild card that

replaces relation instances in connecting paths.

Despite the improvements achieved by SFE in path extraction

and representation, all reviewed methods still suffer from two inter-

related problems. Firstly, they represent facts using a limited feature

set, i.e. connecting paths. This only captures interaction between

subject and object entities, and neglects information describing

entities themselves (like other subgraph paths to neighbour nodes

that can capture entity attributes and properties). This can lead to

sub-optimal predictions. The second problem is that the current

methods totally disregard entity pairs with no connecting paths

in between as a consequence of using a limited feature set. This

means that the methods cannot make certain predictions at all.

We propose a new model called Distinct Subgraph Paths (DSP)

model. The model uses a new set of features that describe distinct

properties of entities using disjoint sets of subgraph paths for both

subject and object entities. For example, in Fig. 1, while investi-

gating the fact ⟨Alice, lecturer_at, UniversityX ⟩, we propose using
subgraph paths to express properties of subject and object entities

Alice and UniversityX. Alice can be expressed using the path set:

[⟨SUB:published_at⟩, ⟨SUB:studied⟩, ⟨SUB:studied,studied−1⟩], and
UniversityX using: [⟨OBJ:has_campus⟩]. These disjoint path sets

provide distinct description of both subject and object entities for a

given fact. This makes our model capable of:

(1) Employing a richer set of features that can describe proper-

ties of candidate fact entities.

(2) Providing ranking scores for node pair candidates in the

absence of connecting paths.

(3) Providing better results than PRA and SFE (ANYREL) in

terms of mean average precision (MAP), mean reciprocal

rank (MRR) and Hits@5, 10, 20 with no extra computational

cost.

Organization. The rest of this paper is organized as follows. Sec-

tion 2 motivates the use of the new feature set. Section 3 presents

the proposed model. Section 4 describes experiments validating

the model. Section 5 discusses the experimental results. Section 6

reviews related works and highlights the contributions of this paper.

Section 7 concludes the paper and outlines the future work.

2 MOTIVATING EXAMPLE
The task of knowledge base completion is a ranking task by na-

ture, since the aim is to find the most probable absent true facts

in a knowledge base [27]. For example, in Fig. 1, a knowledge

base completion task would aim at ranking possible facts about

people and their workplaces. In the absence of connecting paths

between entities, such as between {Alice, Bob, Tedd} and Universi-
tyX, approaches like SFE, PRA and its variants would not be able to

Candidates of relation: lecturer_at
Rank Subject Object
# Entity Rel. Entity Rel.
1 Alice High UniversityX High

2 Bob Med. UniversityX High

3 Tedd Low UniversityX High

4 Alice High TeamX Low

5 Bob Med. TeamX Low

6 Tedd Low TeamX Low

Table 1: Example of candidates’ ranking for the relation lec-
turer_at as per knowledge graph from Fig. 1 and their rele-
vance (Rel.) to the relation.

provide a corresponding relation score. Indeed these methods rely

on the assumption that since non-connected nodes have no con-

necting paths, they have no direct relationship. However, absence

of connecting paths can be a result of knowledge incompleteness.

In our approach we consider using a set of features that we

call distinct subgraph paths (DSP) as support features for ranking

candidate absent facts. Distinct subgraph paths are the union of

the two sets of subgraph paths originating from subject and object

nodes of a triple in a knowledge graph, each prefixed with a distinct

label corresponding to its origin (“SUB:” for subject or “OBJ:” for
object). For example, when investigating the relation lecturer_at
between persons group of entities and corresponding workplace

entities, our model will be able to use the presence of path features

like ⟨SUB:published_at⟩ and ⟨SUB:studied⟩ to predict that Alice has
a high probability of being a subject for the relation. Similarly for

other entities in our example, subgraph paths can be used to rank

candidate facts as in Table 1. This provides a rank of most relevant

entities to be connected with a specific relation. As per our example,

Alice who has studied, and published_at a conference, is more likely

to be lecturing than Bobwho only has studied or Tedd who has none

of these relative attributes. Also, the fact that each one of them

can be lecturing at UniversityX is more probable than lecturing

at TeamX, as attributes of UniversityX like has_campus is more

relevant to objects of relation lecturer_at than those for TeamX.
Therefore, this approach of using distinct sets of subgraph paths

1

for subject and object entities for a specific relation can support the

construction of ranking scores for node pair candidates even in the

absence of connecting paths as shown in Table 1.

However, unlike connecting paths features used in PRA or SFE,

subgraph paths do not capture the interactions (connecting paths)

between entity pairs. Therefore, we use a combination of both DSP

and ANYREL connecting paths features to support ranking node

pair candidates whether they are connected or not in the knowledge

graph.

3 DISTINCT SUBGRAPH PATHS MODEL
In this section, we focus on the technical description of DSP model.

We present how DSP model extracts feature paths from knowledge

graphs, how the model is learned, and how DSP model predict a

1
In the context of feature extraction for knowledge graph triples, we define a subgraph

path as any path originating from candidate fact subject or object nodes.
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Algorithm 1 Extract Subgraph Paths

Input: v node, depth d , knowledge graph G , root path R
Output: vsд Subgraph paths

1: if d = 0 then
2: return ⟨v⟩
3: else
4: vsд = [ ]

5: for (r, u ) ∈ Γ (v, G) do
6: Ru = R + ⟨rk , uk ⟩
7: vsдu =ExtractSubgraphPaths(u , d-1, G , Ru )
8: vsд = vsд ∪ vsдu ∪ Ru
9: return vsд

score for new absent facts. DSP model training operates in two

phases. First, it extracts path features for each node pair instance

consisting of both connecting path (ANYREL) and subgraph path

(DSP) features. Both of these features sets capture different proper-

ties of candidate facts. Subgraph paths of subject and object entities

capture the relevance between these two entities and the consid-

ered relation, while connecting paths between subject and object

entities capture their interactions. DSP model uses these two types

of features to build a feature matrix with binary representation

of path features for each relation type. In the second phase, DSP

model trains a binary classifier for each feature matrix and uses

this model for later predictions. Further description of the how it

works follows in the next subsections.

3.1 Feature Extraction
Let G be a knowledge graph, Γ (e,G) be the set of neighbour links
of entity e in a knowledge graph G , where a link is a combination

of a neighbour relation r and neighbour node u reached by this

relation, (l1 + l2) be the concatenation of two lists l1 and l2, and pu
be a path p going through node u.

First, DSP model extracts subgraph paths of both subject and

object nodes using Depth-First Search as in Algorithm 1, then it

labels these paths with distinct prefixes corresponding to their

origin node (“SUB:” for subject or “OBJ:” for object) using a labelling
function γ (p, label ). Then, DSP model combines subgraph path

originating from subject and object entities that share a common

target node to build connecting paths. Let τ (p) be the target node
of path p that if p starts from nodev to node u, then τ (p) = u, Ps{t
be a path from node s to node t , and p−1 be the inverse of path

p. An inverse of a path is obtained by inversing the order of path

relations and changing their direction, that is if p = ⟨r1, r
−1
2
, r3⟩,

then p−1 = ⟨r−1
3
, r2, r

−1
1
⟩. DSP model combines subgraph paths

originating from subject node with the inverse of path originating

from object node (providing they share a common target node)

to build a connecting path from subject to object. For example,

a subject subgraph path ps{t = ⟨r1, r
−1
2
⟩ and object subgraph

path po{t = ⟨r5, r
−1
3
⟩ are combined to generate a connecting path

p
cp
s{o = ps{t ⊕ p

−1
o{t = ⟨r1, r

−1
2
, r3, r

−1
5
⟩. After, DSP model builds

ANYREL paths corresponding to extracted connecting paths and

label themwith prefix label “ANYREL:”. This procedure of extracting
DSP and ANYREL path features is described in Algorithm 2.

For example, when DSPmodel extracts features for the fact (Tedd,
plays_for, TeamX ) from Fig. 1, it extracts subgraph paths around

Algorithm 2 Extract Feature Paths

Input: (s ,t ) node pair, path length l , knowledge graph G
Output: PANYREL

s{t , PDSPs{t feature paths

1: ssд = ExtractSubgraphPaths(s , ⌈l/2⌉, G , [])

2: t sд = ExtractSubgraphPaths(t , ⌈l/2⌉, G , [])

3: PDSPs{t = γ (s
sд, ”sub”) ∪ γ (t sд, ”ob j”)

4: Ts = { τ (p ) | p ∈ ssд }
5: Tt = { τ (p ) | p ∈ t sд }
6: Tc = Ts ∩ Tt
7: Pcps{t = [ ]

8: PANYREL
s{t = [ ]

9: for t ∈ Tc do
10: for ps ∈ ssд ∧ τ (ps ) = t do
11: for pt ∈ t sд ∧ τ (pt ) = t do
12: Pcps{t = Pcps{t ∪ (ps ⊕ p−1t )

13: PANYREL
s{t =

⋃
p∈Pcps{t

AnyrelPaths(p)

14: return PANYREL
s{t ∪ PDSPs{t

subject and object entities Tedd and TeamX. The union of these

two sets of subgraph paths constitutes DSP feature paths. After,

DSP model uses common target nodes to subject and object entities

Tedd and TeamX such as Mark and Football to extract connecting
paths. For example, DSP model combines paths to common tar-

get node Football: ⟨practise⟩ that originates from subject node and

⟨plays_for,practise⟩ that originates from object node, by appending

the subgraph path from subject entity ⟨practise⟩to the inverse of ob-
ject entity path ⟨practise−1,plays_for−1⟩. This results in a connecting
path ⟨practise,practise−1,plays_for−1⟩.

DSP model uses the same connecting paths extraction process

as SFE, and extends it with distinct subgraph paths for subject and

object nodes as discussed. Despite its high complexity, the feature

extraction process is embarrassingly parallel and can therefore be

distributed to minimise computational cost. It is important to note

that feature extraction phase of DSP model requires no extra com-

putational overhead compared to SFE since proposed DSP subgraph

features are already extracted while generating connecting paths

as shown in Algorithm 2.

3.2 Model Learning
For each candidate fact, the DSP model extracts distinct subgraph

and ANYREL paths features to build a feature matrix based on the

union of the two paths feature sets. These features represent the

column names of the feature matrix, and for each fact, DSP model

populates corresponding feature column with 1 when the feature

is extracted for the fact and 0 otherwise.

DSP generates a separate feature matrix for each relation, where

feature matrices are generated from a set of both positive and

negative facts. Then, for each feature matrix DSP model trains a

logistic regression model to learn a binary classification model for

each relation. This model is then used to predict scores for candidate

facts such that learned path feature weights differ for each relation

type corresponding to its extracted path feature matrix.

Logistic regression is a binary classifier i.e. it can discriminate

between true and false facts in case of knowledge base completion.

It is used to predict scores of candidate facts corresponding to

both classes. DSP model uses the difference between these scores
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corresponding to true and false facts to generate a single score for

candidate facts in the following manner:

s ( f )DSP = s ( f )
true
lr − s ( f )

f alse
lr

where s ( f )DSP is DSP model’s score of candidate fact f , s ( f )truelr is

logistic regression score of class "true facts" and s ( f )f alselr is logistic

regression score of class "false facts", that:

s ( f )truelr =
1

1 + exp(−(X · A + b))

for feature row X and learnt coefficients A, and intercept b and

s ( f )
f alse
lr = 1 − s ( f )truelr , that DSP model scoring function can be

defined as:

s ( f )DSP = 2 ∗ s ( f )truelr − 1

Since the output is an ordered rank, we can simplify the scoring

function to be

s ( f )DSP = s ( f )
true
lr =

1

1 + exp(−(X · A + b))

Using the difference of both logistic regression scores associated to

true fact and false fact classes the DSPmodel is able to transform the

output of the classification into a rank. In case of using a different

learning model than logistic regression, classes score difference can

have different interpretation. We use logistic regression following

previous state-of-the-art path feature models, however, we aim to

investigate the performance of different learning models e.g. SVM
classifier or decision trees in future work.

High ranked elements reflect high positive difference of class

scores in favour of the true facts’ class, and low ranked elements

reflect a high negative difference of class scores in favour of the

false facts’ class.

3.3 Model Interpretability
Expressiveness of machine learning models is a key aspect in their

evaluation, as understanding the behaviour of a model empowers

both users and designers of the model, and it can help assessing

the trust in it [24]. Graph feature models use graph components

as features, and these components can be used as a meaningful

explanation of their prediction. Usually, predictions of graph feature

models are expressed by features they extract, that represent prior

knowledge parts e.g. subgraph paths, connecting paths or neighbour
nodes. While other approaches e.g. association rule mining [6],

and relation path pattern mining [17] extract rules and patterns

from knowledge graphs and use them as evidence for existence of

candidate paths and triples.

DSP model expresses its predictions using the set of features it

uses: distinct subgraph paths and ANYREL paths. It uses weights of

the learned path features coefficients as an explanation. Each feature

coefficient in DSP learned model represents how important is the

corresponding path feature for the predicted score. I For example,

predicting a score for candidate fact (Tedd, plays_for, TeamX ) from
Figure 1 can be expressed in a series of path features and associated

weights as shown in Table 2. Among the features that contributed

the most to the prediction is ⟨ANYREL:ANYREL,plays_for⟩which
can correspond in our example to the path: ⟨colleague,plays_for⟩.

Table 2 presents a set of possible path features that can be ex-

tracted by DSP model for candidate fact (Tedd, plays_for, TeamX )

# Path feature DSP
Weight

SFE
Weight

1 ⟨SUB:practise⟩ 0.32 N/A

2 ⟨SUB:friend−1⟩ -0.21 N/A

3 ⟨OBJ:in_league⟩ 0.45 N/A

4 ⟨OBJ:plays_for−1⟩ 0.53 N/A

5 ⟨ANYREL:colleague,ANYREL⟩ 0.75 0.8

6 ⟨ANYREL:ANYREL,plays_for⟩ 1.45 1.2

Table 2: Example of DSP and SFE model interpretation of a
prediction score of fact (Tedd, plays_for, TeamX).

with their possible learnt weights for DSP and SFE. The table shows

that DSP model can extract and learn coefficients for richer set

of path features. For example, it can learn weights for first four

path feature types, distinct subgraph paths, while SFE model only

extracts and learns ANYREL path feature types.

4 EXPERIMENTAL SETUP
In this section, we present the benchmarking dataset, NELL, and we

discuss its curation sources, its properties, and its method for gener-

ating negative instances. Then, we discuss our evaluation protocol

and ranking metrics. We also discuss setup and implementation

details of our experiments.

4.1 Benchmark dataset

NELL benchmark dataset. To evaluate DSP model and compare

it with prior art, we reuse the NELL benchmark dataset
2
proposed

by Gardner and Mitchell [7] and used to compare SFE, PRA and

its variants. NELL dataset was automatically created by scraping

the Web then extracting general knowledge information from web

pages [16]. The dataset itself uses knowledge base completion mod-

els for assessment of new candidate facts that can be learned from

present facts. The NELL benchmark dataset consists of three ele-

ments: graph triples, the knowledge graph including all entities and

relations; training triples and testing triples, sets of positive and

negative instances of 10 relations used for evaluation purpose. Sta-

tistics of NELL benchmark dataset used in experiments are detailed

in Table 3.

Negative sample generation. Generating negative example facts

is an important issue for training themodel. In the NELL benchmark

dataset, negative facts are generated using constrained version of

closed world assumption. Typically, knowledge graphs contain only

true facts. However, under the open world assumption, all absent

facts can not be assumed to be false as this absence can happen due

to knowledge graph incompleteness. Using a constrained version

of closed world assumption allows using facts that does not exist in

the knowledge graph as negative examples while using heuristics

to minimise the chances of those newly asserted negative facts to

be true. Gardner and Mitchell [7] applied the following strategy to

generate negative facts as part of the NELL benchmark dataset: for

each subject and object nodes in the set of positive facts, a score is

2
Description for the NELL benchmark dataset can be found at http://rtw.ml.cmu.edu/

emnlp2015_sfe/

http://rtw.ml.cmu.edu/emnlp2015_sfe/
http://rtw.ml.cmu.edu/emnlp2015_sfe/
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NELL benchmark dataset
Element # Triples

Graph relations ≈ 110K

Graph entities ≈ 1.2M

Graph fact triples ≈ 3.8M

Training triple instances ≈ 54K

Testing triple instances ≈ 13.5K

Table 3: Statistics of the NELL benchmark dataset used in
experiments.

computed for similar nodes of same class (NELL meta information)

using personalised page rank [25]. Then, negative examples are

generated by creating absent facts frommost similar nodes from the

personalised page rank with a ratio of 1:10 positives to negatives.

We use the NELL benchmark dataset which consists of both positive

and negative fact instances with 1:10 positives to negatives ratio to

be able to compare to previous works.

4.2 Evaluation
Although using the same NELL benchmark dataset, PRA and SFE

models make use of a limited instance set corresponding to limita-

tions of their systems. In the following, we discuss the evaluation

configuration and evaluation metrics with regard to approaches

used by prior art.

Configuration. Since PRA and SFE based models are only taking

into account connecting paths as features, they only consider a

subset of the evaluation dataset for which node pairs have a con-

necting paths between them. DSP model can handle both instance

node pairs with and without connecting paths. Ergo, we run our

experiments in two different configurations: set of instances with

connecting paths (referred to as “connected nodes”) and set of

all instances (referred to as “all nodes”). We evaluate DSP model,

PRA [10], SFE with different features like plain connecting paths i.e.
PRA feature paths, bigram feature paths introduced by Neelakantan

et al. [19], and combination of PRA and ANYREL feature paths [7]

over these two different configurations. Further discussion of these

approaches and their path feature types is presented by Gardner

and Mitchell [7].

Since PRA, its variants and SFE do not handle non-connecting

paths, we assume 0 as a score for instance node pairs with no

connecting paths. The scoring function of these models depends

on the accumulation of weights corresponding to connecting path

features. Therefore, 0 score of non-connecting paths which do not

belong to their feature set will not impact the scoring function.

Metrics. Similarly to prior-art, the evaluation metrics we use are

the mean average precision (MAP) and mean reciprocal rank (MRR).

We introduce as well a new metric – Hits@k – that is the number

of correct elements predicted among the top-k elements. MAP is

the mean of a set of average precision (AP) scores, and average

precision is the average of Precision@k scores for positive elements

in the rank [13]. Precision@k is defined as:

P@k (π , l ) =

∑
t ≤k I {lπ−1 (t )=1}

k

where π is a list, l is label function, I {. } is an indicator function of

a element which equals to 1 when the element is relevant and 0

otherwise, and π−1 (j ) denotes the element ranked at position j of
the list π . Let n be the total number of rank elements andm be the

total number of true elements, we can define Average Precision as:

AP (π , l ) =

∑n
k=1 P@K (π , l ) · I {lπ−1 (t )=1}

m

Mean average precision is the mean of a set of average precision

scores
3
. Mean reciprocal rank is the harmonic mean of the rank

position of the first relevant element defined as:

MRR =
1

|Q |

|Q |∑
i=1

1

ranki

where ranki refers to the rank position of the first relevant element

for the i-th query.

4.3 Pre-processing
For comparison purposes, we apply the same pre-processing strat-

egy as for SFE [7]. NELL benchmark dataset includes semantic

information about relations such as inverse relation property. For

example, relation concept:riverflowsthroughcity is declared as an in-

verse relation of concept:cityliesonriver, and both exist in the dataset.

Following the pre-processing applied in SFE work, we discard these

inverses while extracting path features so to disable direct infer-

ence form inverse relations. For instance, if there is a candidate fact

(river:wye, concept:riverflowsthroughcity, city:hay) in the knowledge

graph, we discard the corresponding inverse relation fact (city:hay,
concept:cityliesonriver, river:wye).

Nonetheless, to allow for bidirectional exploration of the knowl-

edge graph, we append inverses of all facts in the knowledge graph

used. That is if (e1, r1, e2) is a fact in the dataset, we also append

(e2, r
−1
1
, e1). While predicting a given fact using the model, we dis-

regard candidate facts’ inverse.

4.4 Implementation
In our experiments we use Python3 as a language. Version 0.17.1

of the scikit-learn python library is used for the implementation

of logistic regression [21]. We use logistic regression with default

configuration of L1 regularization, where inverse of regularization

strengthC = 1.0. We choose adjacency matrices as a data structure

to represent a knowledge graph. During feature extraction, we ex-

tract subgraph paths of depth 2. We only use 50 neighbour instances

per relation in order to avoid dense neighbourhood of nodes and

keep a sample of all neighbour nodes. We do not sample the set of

neighbour all together, as this may result in discarding neighbour

relations with fewer instances in dense nodes. We therefore sample

neighbour nodes per relation instance. All experiments run over a

machine with 40 Gb of RAM and 10 CPU processing cores of 2.2

GHz.

3
During our experiments, we have found out that the published code of PRA and SFE

uses an inaccurate implementation of the AP metrics. After confirming this with the

authors in a private communication, we have reimplemented the metric using the

presented formula before computing the values discussed in this paper. Note that the

reimplemented metric does not introduce any dramatic changes when comparing the

existing techniques among themselves or with our results. We only wanted to make

sure the results we present are as accurate as possible.
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Connected Nodes
Model (features) MAP MRR
PRA (PRA) 0.447 0.792

SFE (PRA) 0.557 0.806

SFE (Bigrams) 0.638 1.000
SFE (PRA+ANYREL) 0.675 0.933

DSP (ANYREL+DSP )
∗ 0.690 0.950

All Nodes
Model (features) MAP MRR
PRA (PRA) 0.569 0.783

SFE (PRA) 0.540 0.806

SFE (Bigrams) 0.654 1.000
SFE (PRA+ANYREL) 0.655 0.933

DSP (ANYREL+DSP )
∗ 0.698 0.950

Table 4: Evaluation of DSP model over set of connected/all
node pair instances.

Model MRR Hits@k
@5 @10 @20

SFE (Bigrams) 1.000 4.5 8.5 16.9

SFE (PRA+AR) 0.933 4.6 8.9 17.0

DSP (DSP +AR)
∗

0.950 4.6 9.0 17.5
Table 5: Average Hits@k of DSP and other models.

5 RESULTS AND DISCUSSION
The outcome of our experiments in both connected nodes and all

nodes configurations is presented in Table 4. DSP model achieves

a mean average precision of 0.692 and 0.698 for connected nodes

configuration and all nodes respectively, outperforming SFE with

MAP of 0.675 and 0.655, and PRA with 0.557 and 0.54. Considering

also non-connected paths (all nodes configuration), the mean av-

erage precision of DSP model shows a slight improvement of 1%,

while other approaches like SFE with different features shows a

decrease of mean average precision. On the contrary, PRA shows

an improvement of 12% in all node configuration, as in connected

nodes configuration PRA has high percentage of discarded positive

candidate facts due to absence of connecting path as it uses random

walks, where scoring non connected instances with 0 enables PRA

to gain this improvement.

In terms of mean reciprocal rank (MRR), SFE with bigrams fea-

tures provides best results with a score of 1.0. While MRR provides

a useful information when a user only wishes to see one relevant

element, it may be more suited in the context of knowledge graph

completion to look at the number of top-k relevant elements. We

present in Table 5 the measure of Hits at k for k = 5, 10, 20. For that

measure, DSP model outperforms all other models demonstrating a

better ability to rank higher relevant elements within top-5, 10, 20.

Table 6 details models’ performance in the “all nodes” config-

uration per relation. Column “NCI” represents the percentage of

non-connecting pair nodes instances for a given relation
4
. The re-

sults show that models like SFE or PRA are affected negatively by

the absence of non-connected node pair instances. On the contrary

and following our intuition, DSP model improvement is greater for

relations with high percentage of non-connected instances. DSP

model’s highest improvement ∆MAP ≈ 0.21 is observed for relation

concept:sportsteampositionforsport which has the highest percent-

age of non-connected instances of 13%. The lowest DSP model’s

relative performance ∆MAP ≈ −0.04 is observed for relation con-
cept:statehaslake with the lowest percentage of non-connected in-

stances of 0%.

In our experiments, we have found that DSP model is able

to provide a high rank
5
for true candidate facts even in the ab-

sence of connecting paths, hence not in the result set of any pre-

vious graph feature models. For example, considering the rela-

tion concept:citylocatedincountry, DSP model is able to predict that

city:abu_dhabi is located within country:the_united_arab_emirates
(ranked at top 2.87%) while there are no connecting paths between

them. Similarly, DSP model was able to provide a high rank (top

2.19%) for the fact that river:wye and city:hay are connected with

concept:riverflowsthroughcity relation, despite they have no con-

necting paths between them.

6 RELATEDWORK
Many relational learning models were developed to predict new

facts in knowledge bases. In recent years, latent feature models

witnessed a rapid development providing a variety of models using

methods such as tensor factorization [20] or latent distance embed-

dings [2]. Although these models excel in the task of link prediction

in knowledge graphs, their predictions are hard to interpret. They

act as a black box relying on latent representation of features that

are hard to trace back to original knowledge [28].

In contrast, graph feature models provide more expressive pre-

dictions. They use graph-based features like subgraphs, connecting

paths and neighbourhood information, which corresponds to in-

telligible parts of prior knowledge. This makes these techniques

more suited to use cases where interpretability of the predictions

matters (e.g. in life sciences).

Recent development of graph feature models encompasses Path

Ranking Algorithms (PRA) [10] and its variations that used back-

ward random walks [11], latent syntactic cues [8], incorporating

vector similarity in inference [9] or bigram feature path [19]. The

most recent improvement of the PRA-based techniques is SFE [7]

that uses ANYREL path features. This set of models relies exclu-

sively on connecting paths between nodes as features. They provide

expressive and interpretable predictions, but they still lack in terms

of efficiency and ability to predict scores for relationship between

non-connected nodes [7].

In their work, Gardner and Mitchell [7] investigated the use

of non-connected subgraph paths called “One-Sided features.” In

their experiment, the authors only considered these features with

higher expressivity on data with connected entity pairs and con-

cluded that such features yield inferior results compared to PRA

4
Depending on the sampling method used (random walk, DFS), pair nodes can be

considered connected or non-connected.

5
Positive candidate facts with high rank are in the top 10% elements of the rank, where

positive to negative ratio is 1:10.
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Relation NCI

DSP (DSP + ANYREL) SFE (PRA + ANYREL)

AP RR H@5 H@10 H@20 AP RR H@5 H@10 H@20

concept:riverflowsthroughcity 1% 0.503 1.00 5 9 19 0.480 1.00 5 9 19

concept:sportsteampositionforsport 13% 0.768 1.00 5 10 14 0.558 1.00 5 9 9

concept:citylocatedincountry 1% 0.548 1.00 3 8 18 0.495 0.333 3 8 17

concept:athleteplaysforteam 1% 0.776 1.00 5 10 20 0.776 1.00 5 10 20

concept:writerwrotebook 10% 0.828 1.00 5 10 20 0.783 1.00 5 10 20

concept:actorstarredinmovie 9% 0.869 1.00 5 10 20 0.786 1.00 5 10 20

concept:journalistwritesforpublication 8% 0.879 1.00 5 10 20 0.838 1.00 5 10 20

concept:stadiumlocatedincity 1% 0.628 1.00 5 10 19 0.624 1.00 5 10 20

concept:statehaslake 0% 0.237 0.50 3 3 5 0.278 1.00 3 3 5

concept:teamplaysinleague 1% 0.942 1.00 5 10 20 0.936 1.00 5 10 20

Average - 0.698 0.950 4.60 9.00 17.50 0.655 0.933 4.60 8.90 17.00

Table 6: Evaluation of DSP and SFE over NELL 10 relations using all nodes pairs, with percentage of non-connected instances
for each relation.

PRA SFE DSP

Negatives Failed RW. PPR PPR

F. types CP CP & ANYREL DSP & ANYREL

F. weights RW prob. Binary Binary

Model LogReg LogReg LogReg

Scoring

∑
fi ∈X Ai

∑
fi ∈X Ai

1

1+exp(−(X ·A+b ))

Scope Connected Connected All

Table 7: Properties of current graph feature models.

and ANYREL features. In our work we consider the effect of non-

connected subgraph paths to better model relationships even in the

absence of connecting paths. Our experiments have demonstrated

the relevance of this contribution.

Despite the recent focus on latent feature models, it has been

observed experimentally that neither latent feature models nor

graph models are superior for learning over knowledge graphs;

they are complementary [3]. The former models harness global

graph patterns, while the latter capture local and quasi-local graph

patterns [28].

In this work, we focus on enhancing the predictive capabilities of

graph feature models and utilising their expressiveness in the task

of knowledge base completion, where DSP model extends the work

accomplished by PRA and SFE. Table 7 shows a comparison between

properties of DSP model compared to previous models like SFE and

PRA, where Negatives represent negative generation technique,

F.Types represent feature types, F. weights represent representation
of feature weights, and Scoring represent model’s scoring function,

where A is learnt coefficients, and b is learnt intercept.

SFE and DSP model use PPR for generating negative instances

while PRA uses failed random walks. Also, they use binary repre-

sentation of feature weights in the feature matrix while PRA uses

random walk probabilities. On the other hand, DSP model uses

DSP & ANYREL features while PRA and SFE use connected path

and ANYREL path features. Also, its prediction scope target all

candidate triples while PRA and SFE target triples with connected

subject and object entities. These are our main technical contribu-

tions over the state of the art, and our experiments have shown

these contributions are reflected in tangible gains in performance,

without sacrificing computational efficiency.

7 CONCLUSION
We introduced a new graph feature model, Distinct Subgraph Paths

(DSP) model, that uses a combination of distinct subgraph paths for

subject and object nodes and connecting paths in order to predict

new facts in knowledge graphs. Using a richer set of features, the

model is able to provide a ranking score for node pairs candidates in

the absence of connecting paths addressing an important limitation

of current approaches. Moreover, the extraction of distinct subgraph

path features comes with no computational overhead compared to

SFE. We showed experimentally that DSP model outperforms both

PRA and SFE (ANYREL) in terms of mean average precision (MAP),

mean reciprocal rank (MRR) and Hits@5, 10, 20.

Moving forward, we plan to explore the use of graph path fea-

tures in two different directions: (a) injecting graph path feature

in latent feature models; (b) using path features to extract horn

clauses in knowledge graphs as a support for rule mining models.
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