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Abstract 

 

In Ireland, agricultural activities have been identified as major sources of nutrient 

input to receiving waters and it has been estimated that these activities contribute 

75.3% of the nitrogen (N) and 33.4% of the phosphorus (P) in these waters. Strategy 

at European level focuses on the prevention of nutrient loss by improved farm 

management. However, it does not focus on nutrient remediation or incidental nutrient 

loss of farmyard manures to surface and groundwater. This review describes the 

impact of agriculture on the environment in Ireland and examines emerging 

technologies for agricultural wastewater treatment. An integrated approach at pre-

treatment and field stages for nitrate (NO3) remediation and P control is 

recommended. 
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1. INTRODUCTION 

 

1.1 Legislative background 

 

The Surface Water Directive, 75/440/EEC (EEC, 1975), the Groundwater Directive, 

80/68/EEC (EEC, 1980), the Drinking Water Directive, 98/83/EC (EC, 1998), the 

Nitrates Directive, 91/676/EEC (EEC, 1991a), and the Urban Wastewater Directive, 

91/271/EEC (EEC, 1991b), have focused considerable attention on the 

environmentally safe discharge of agricultural wastewaters in Ireland. The Water 

Framework Directive (WFD), 2000/60/EC (EC, 2000), came into force on 22nd 

December, 2000, and was transposed into Irish legislation by the European 

Communities (Water Policy) Regulations 2003 on 22nd December, 2003. Eight river 

basin districts (RBDs) have been established on the island of Ireland to facilitate the 

aim of achieving “good status” in all Irish water bodies by 2015.  

  

The WFD will bring about major changes in the regulation and management of 

Europe's water resources that include, in general: 

 a requirement for the preparation of integrated catchment management plans 

that identify point and non-point pollution, water abstraction and land use; 

 the introduction of an EU-wide target of "good ecological status" for all 

surface waters and groundwaters;  

 the planning and implementation of efficient and cost-effective measures to 

protect groundwaters and surface waters. 
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1.2 Agriculture and water quality in Ireland 

 

In Ireland, agriculture is an important national industry that involves approximately 

270,000 people, 6.191 million cattle, 4.257 million sheep, 1.678 million pigs and 10.7 

million poultry (CSO, 2006). It utilizes 64% of Ireland’s land area (Fingleton and 

Cushion, 1999), of which 91% is devoted to grass, silage and hay, and rough grazing 

(DAF, 2003). Grass-based rearing of cattle and sheep dominates the industry (EPA, 

2004). In 2004, 60 million tonnes of agricultural waste were generated, of which 

60.6% was from cattle manure and slurry (EPA, 2004; Table 1). 

 

Livestock production is associated with external inputs of nitrogen (N) and 

phosphorus (P), which include chemical fertilisers, soiled waters and slurries. Nitrate 

(NO3) leaching from wastewater irrigation is dependent on the hydraulic loading rate, 

soil water content and soil type (Ryan, 1998). Since both NO3 and soil have negative 

electrostatic charges, NO3 in solution tends not be taken up by the soil below the 

rooting depth and travels through the soil, leading to increased potential for NO3 

groundwater contamination (Abu – Ashor et al., 1994; Kung et al., 2000). The 

increases in dissolved P concentrations in rivers and streams have been linked - 

through overland flow and erosion losses - to the accumulation of excess soil P in 

these catchments under intensive animal production (Boesch et al., 2001). Daly et al. 

(2001) examined the sorption capacity and desorption dynamics in Irish grassland 

soils and found that high organic-matter soils have low P sorption capacities and poor 

P reserves compared with mineral soils, resulting in P losses from these organic soils 

where P amendments exceed crop needs (Daly et al., 2001).  
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Nutrient losses to surface and groundwater may have an adverse impact on 

biodiversity and ecology of aquatic agri-environment ecosystems (Schulte, 2006). 

Agricultural nutrient inputs are the most significant nutrient load entering receiving 

waters in Ireland and have been estimated to comprise 75.3% and 33.4% of the N and 

P loads in these waters (RBD, 2005). A survey of 1132 rivers and streams from 2001 

to 2003 (Toner et al., 2005) estimated that the percentage of pollution attributed to 

agriculture was approximately 32% in rivers and streams that were slightly or 

moderately polluted, but only 15% in those that were seriously polluted. Other studies 

indicate that diffuse P losses from agriculture may contribute to eutrophication 

(Clabby et al., 1992; Bowman et al., 1996; Lucey et al., 1999; Mc Carrigle et al., 

2002).  

 

At present, the European strategy to restore the “good ecological status” of surface 

water and groundwater focuses on reducing further nutrient loss to these water bodies. 

Results from a Water4all (2005) project suggest that regulation alone may not achieve 

sufficient improvement in water quality in soils and groundwater aquifers in an 

acceptable timeframe and there may be need for more accelerated solutions 

(Water4all, 2005).  

 

The objective of this paper is to examine emerging technologies for agricultural 

wastewater treatment in Ireland to satisfy the requirements of the WFD.  
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2. Current measures for the protection of waters 

 

Traditionally, agricultural wastes are disposed of by land spreading. In land spreading, 

the recharge rate, the time of year of application, the hydraulic conductivity of the 

soil, the soil water content, the depth of soil to the water table and/or bedrock, and the 

concentration of nutrients and suspended sediment in the wastewater (soiled water and 

any discharge containing nutrients) are some of the defining parameters that 

determine NO3 movement through the soil to the water table. The recommended 

maximum rate of application is 5 mm per hour and the quantity applied should not 

exceed 50 m3 per hectare per application (ADAS, 1985).  

 

3. Pre-treatment and in situ amendments  

 

3.1 Alum and polyacryamide 

 

Aluminium sulphate (alum) and polyacrylamide (PAM) are chemical flocculants 

commonly used in water treatment plants to remove P and suspended sediment. They 

can be used as pre-treatment and in situ amendments for agricultural wastewater 

amelioration.  Alum should be applied to water or wastewater in a pH range of 5.5 - 

9.0 as it has been found to be non-toxic in this range. Its final concentration in 

drinking water distribution systems and receiving waters should remain below 200 µg 

Al L-1 as this is the safe upper-limit concentration of aluminium for drinking water 

(WHO, 2003). PAM causes suspended particles to join and form aggregates which 

then rapidly settle out of suspension and are of filterable size, thereby removing 

particulate P from solution (Adin and Asano, 1998). Its soil stabilising and 
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flocculating properties improve runoff water quality by reducing sediments, N, 

dissolved reactive P (DRP) and total P (TP), chemical oxygen demand (COD), 

pesticides, weed seeds, and microorganisms in runoff (Sojka et al., 2007). 

 

3.1.1 Alum and PAM for farm water treatment 

 

The direct addition of alum or PAM to farm wastewater before land application may 

reduce the risk of nutrient loss to surface waters. The addition of alum sludge directly 

to soil prior to land spreading of wastewater may also be a viable option to control P. 

To date, the use of chemical amendments have mainly been investigated in poultry 

litter studies (Moore et al., 1999; Moore and Edwards, 2005, 2007). The US 

Department of Agriculture (USDA) has made the use of alum a conservation standard 

practice in several US states (Moore and Edwards, 2005) and, presently, about 700-

800 million broilers per year are grown with alum in the US (P.A. Moore, personal 

communication). Limited work is investigating chemical additions to dairy 

wastewater (McFarland et al., 2003).  In Ireland, no study has investigated the use of 

alum for wastewater treatment. Therefore, issues relating to Al release to surface 

waters need to be investigated. 

 

Sims and Luka-McCafferty (2002) used alum as a poultry litter amendment 

(application rate 0.11 ± 0.01 kg alum per bird) on a farm-scale study. Alum was 

applied every six weeks to the litter before land spreading, after removal of each flock 

of broilers for processing. Alum amendment was shown to decrease litter pH (control 

7.8±0.3 to amended 7.2±0.3), and the solubility of P (1475±492 to 405±192 mg kg-1), 

inorganic arsenic (As) (19±4 to 7±3 mg kg-1), copper (Cu) (272±50 to 172±45 mg kg-
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1) and zinc (Zn) (29±7 to 15±10 mg kg-1). Similar results were reported by Moore et 

al. (1997), who applied alum to poultry litter at a rate of 0.091 kg per bird 

(corresponding to 10% alum by weight of the broiler litter). In this study, reduced 

litter pH and decreased NH3 volatilization from the litter resulted in atmospheric NH3 

reductions of 97% after 4 weeks in alum-amended houses.  

 

Moore and Edwards (2005) also investigated the effects of alum addition to poultry 

litter on Al in runoff from 52 randomised 1.52m x 3.05m plots. Over a 10-year study, 

the application rates of alum-treated broiler litter were: 65, 130, 195 and 260 kg N ha-

1. Total and soluble Al concentrations in the runoff ranged from 0.6 to 1.6 mg Al L-1 

and 0.1 to 0.2 mg Al L-1, respectively. Udeigwe et al. (2007) also found that alum-

amended litter can reduce the amount of water soluble P (WSP) in surface runoff 

water. Moore et al. (1999) reported WSP concentrations ranging from 15 to 40 mg P 

kg-1 in soils fertilised with unamended poultry litter at application rates of 2.24 to 8.98 

Mg ha-1. Alum-amended litter, applied at rates ranging from 65 to 265 kg N ha-1, 

produced soil WSP concentrations similar to unfertilised soils - approximately 20 mg 

P kg-1 in this study.   

 

The use of alum as a soil amendment has been shown to increase the binding potential 

of soils and is effective in immobilizing soluble P (McFarland et al., 2003; Zvomuya 

et al., 2006). McFarland et al. (2003) applied dairy wastewater (875 mg TN L-1, 87 

mg TP L-1, 4.4 mg PO4-P L-1, 244 mg NH3-N L-1, 244 mg Al L-1 and pH 7.9) at 20 

mm to three 2.5 m x 3 m plots: a control plot (5.4% slope), a plot amended with alum 

(alum dosage, 521.6 g; 6.4% slope), and a plot amended with gypsum (gypsum 

dosage, 576 g; 5.9% slope).  Under a rainfall intensity of 76.2 mm h-1, alum-amended 
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plots had maximum TP and PO4-P concentrations in surface runoff of 14.3 and 0.07 

mg L-1; pre-application surface runoff concentrations were 13.3 and 0.66 mg L-1, 

respectively. Post-application TP and PO4-P concentrations from the gypsum-

amended plots were 11.1 and 0.57 mg L-1, respectively; pre-application surface runoff 

TP and PO4-P concentrations were 12.1 and 0.54 mg L-1, respectively. Al 

concentrations in the surface runoff water from the alum amended plot was 314 mg L-

1 – 30% more than the pre-application Al runoff concentration of 220 mg L-1. The 

authors did not measure soluble Al in this study, but the soils contained about 5,000 to 

6,000 ppm Al before any alum was added (A.M.S. McFarland, personal 

communication).  

 

Other studies using alum buffer strips have shown reductions in runoff DRP of up to 

86% (Peters and Basta, 1996; Basta and Storm, 1997; Gallimore et al., 1999; Haustein 

et al., 2000; Dayton et al., 2003). Dayton and Basta (2005) applied poultry litter at a 

rate of 8.8 Mg ha-1 to the upper 75% area of a 0.5m-wide by 1m-long flume, inclined 

at a slope of 5%. In the remaining 25% of the downslope flume area, air-dried water 

treatment residue (WTR; Al range 1.39-165 g kg-1) was applied to a buffer strip at 

rates of 0 (the control), 5, 10, and 20 Mg ha-1. Under rainfall intensities of 70 mm hr-1, 

applied for 30 minutes, mean DRP concentrations in the control studies were 31.1 mg 

L-1. For WTR additions of 5, 10 and 20 Mg ha-1, mean DRP in the surface runoff was 

reduced by 37.6, 50.5 and 86.2%, respectively. 

 

PAM has also been used to separate solid and liquid components of swine manure. 

Optimum PAM dosage rates vary with the amount of  SS in the liquid manure; 26 and 
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79 mg PAM L-1 for samples containing 1.5 and 4.1 g TSS L-1, respectively, have 

achieved 90 to 94% removals (Vanotti and Hunt, 1999).  

 

PAM greatly reduces irrigation-induced erosion on furrow irrigated fields while 

sediment ponds can be constructed to remove suspended sediment from irrigation 

runoff with seasonal application rates of 1 kg PAM ha-1 (furrow sub-surface irrigation) 

to 5 kg PAM ha-1 (sprinkler irrigation) (Lentz and Sojka, 1992). Application rates of 1 

kg PAM ha-1 should be applied after first cultivation to reduce furrow irrigation-

induced erosion and an additional 0.5 – 1 kg ha-1 for the next three irrigations. An 

initial dose of PAM at 10 mg L–1 in irrigation inflows during the furrow advance 

period may achieve 93% reduction in sediment loss (Lentz and Sojka, 1992).  

 

3.1.2 Alum and PAM for surface waters 

 

Alum and PAM may be also used to reduce the SS and nutrient concentration of 

surface waters. Nutrient-rich agricultural wastewater has caused eutrophication in the 

Salton Sea, California (Mason et al., 2005). The removal of dissolved P and P-laden 

sediment from this water using non-ionic PAM (2 mg L-1) and alum (4 mg L-1) - 

added to ditches receiving tributary waters - substantially reduced SS and turbidity in 

low energy systems (velocity gradients < 10 s–1) by 95%, and soluble P by 93%. Best 

results are obtained when PAM and alum are used in conjunction with settlement 

basins or low-flow regimes.                                                                                                                                                

 

3.2 Ochre   
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Ochre (a ferric oxyhydroxide precipitate) deposits can occur due to acid mines, and 

can be ecologically devastating (Gray, 1996). The sorption capacity of ochre to 

sequester P ranges from 0.5 g P kg -1 to 2 g P kg-1 (Bozika, 2001) and is site-specific 

(Heal et al., 2005). Preliminary studies on the P-sorption capacity of ochre from the 

Avoca-Avonmore river catchment in the south-east of Ireland suggest that it is capable 

of adsorbing up to 16 g PO4-P kg-1 (Fenton et al., 2007). The ochre P adsorption 

capacity compares very favourably with other low cost media (Table 2). The potential 

for ochre to reduce P from soiled water is high and, if used in conjunction with 

biofilters, may provide an efficient means of treating soiled water. Ochre-P pellets, 

developed by the University of Newcastle in the U.K (Heal et al., 2005), allow in situ 

applications of ochre at specific locations (P stripping zones) on a farm without 

discoloration of water. They absorb P from solution and may be used in the 

remediation of wastewaters from different sources, such as agricultural runoff. 

Exhausted pellets may then be pulverized and applied as fertilizer. As P desorption 

from saturated ochre is < 1% (Fenton et al., 2007), it may be used in surface water and 

replaced when saturated.  

 

3.3 Relevance and applicability of alum, PAM and ochre for Ireland  

 

The EU Sewage Sludge Directive, 86/278/EEC (EEC, 1986), specifies limit values for 

maximum concentrations of heavy metals in soil and sludge and limit values for 

maximum annual quantities of heavy metals introduced to the soil (Table 3). A Code 

of Good Practice for the Use of Biosolids in Agriculture (DEHLG, 1999) sets new 

standards for treatment of biosolids. These standards are broadly in line with the 

USEPA ‘Class A’ standard. Biosolids that meet such standards must have very low 
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pathogen content, have low metal content and the organic matter is stabilized so there 

is little odour or possibility of attracting pests that spread disease. Such “exceptional 

quality biosolids” can be used on the farm without a site permit, or can be sold to 

consumers for garden use. This presents new challenges for the optimisation of sludge 

treatment and final effluent quality. However, not all sludge is suitable for land 

application. In a study in the south east of Ireland, 21% of soils breached the 

provisions of the EU Sewage Sludge Directive for heavy metals before any sludge 

application (McGrath and McCormack, 1999). This, coupled with the suitability and 

availability of tillage lands, poses problems for sludge application.  

 

With 90% of all sludge coming from agriculture, the addition of alum or PAM to farm 

wastewater before land application would reduce the risk of nutrient loss to surface 

waters. This could be done in various ways: direct alum or PAM application to soil, 

simultaneous application during land spreading or prior application to storage 

facilities. Another option is to apply alum and PAM in buffer strips. Ochre could be 

applied in conjunction with alum and PAM to sequester P after precipitation of solids 

has occurred. However, the possibility of heavy metal loss in surface runoff needs to 

be further investigated. 

  

4. Emerging technologies for wastewater treatment 

 

4.1 N removal  

 

Conventional methods have been used to remediate NO3 contamination, including: 

monitored natural attenuation (ASTM, 1998); pump-and-treat (USEPA, 1990), 
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wherein treated water is used to irrigate crops; pump-and-waste (USEPA, 1990), 

wherein contaminated water is evaporated or injected into a saline aquifer or 

geological unit; and phytoremediation (Suresh and Ravishanker, 2004). Pump-and-

treat may be expensive and pump-and-waste is not sustainable and causes plume 

migration.  

 

New and emerging pre-treatment remediation technologies, such as continuously 

moving biofilm reactors (Rodgers and Burke, 2002), sequencing batch biofilm 

reactors (Rodgers et al., 2004), trickling filters (Kuai et al., 1999), activated sludge 

systems (Gao et al., 2004), fluidised-bed biofilm reactors (Rabah and Dahab, 2004) 

and rotating biological contractors (Ayoub and Saikaly, 2004) have shown good 

potential for biological N removal from domestic and agricultural wastewaters. These 

technologies may be used to remediate dairy parlour washings and soiled water, and 

may reduce storage volumes and associated costs.  

 

4.1.1 Permeable reactive barriers 

 

Low-cost, in situ treatment systems, called permeable reactive barriers (PRBs), may 

be used to treat groundwater. PRBs are defined as “an emplacement of reactive 

materials in the subsurface designed to intercept a contaminant plume, provide a flow 

path through the reactive media, and transform the contaminants into environmentally 

acceptable forms to attain remediation concentration goals down-gradient of the 

barrier” (Powell and Powell, 1998). In situ subsurface denitrification trenches, 

wherein wastewater flows through a carbon (C) rich mixture to reduce NO3 

concentrations, is a PRB adapted for agricultural use (Healy et al., 2006). Organic C 
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amendments offer low-cost surface and subsurface treatment alternatives for 

wastewater.  

 

Four types of PRB exist: (1) a funnel-and-gate system used primarily for halogenated 

hydrocarbons, aromatic compounds and heavy metal remediation; (2) an injection 

well configuration where a reactive wall is generated through injection of a reactive 

solution; (3) passive collection with reactor cells, where contaminated water is 

drained to a reactive zone; and (4) a shallow continuous trench used for NO3 

remediation.  Horizontal flow (Erickson et al., 1974) or vertical flow (Robertson and 

Cherry, 1995) denitrification trenches using a solid carbon source (woodchip) as the 

filter media have been used in Australia, Canada, USA and New Zealand 

(Foundations for Water Research, 2004).  

 

4.1.2 Reactive materials for PRB 

 

Denitrification may be increased in soils by the addition of an external C amendment. 

This C amendment could include woodchip, wheat straw, corn, vegetable oil, sawdust 

mulch, treated newspaper or unprocessed cotton (Volokita et al., 1996). In situ 

treatment may involve material being used separately or mixed with soil or sand. 

Different media have different denitrification rates (Table 4). Sawdust has higher 

denitrification rates due to its associated higher surface area but is prone to clogging. 

After barrier construction, Schipper et al. (2004) measured saturated hydraulic 

conductivities of 0.48 m day-1 and 65.4 m day-1 in a PRB sawdust wall and aquifer, 

respectively; this caused groundwater flow under - rather than through - the reactive 
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media. Another disadvantage of sawdust is its low durability over time (Horn et al., 

2006).  

 

Healy et al. (2006) examined the use of various wood materials as a carbon source in 

laboratory horizontal flow filters to denitrify NO3 from a synthetic wastewater. The 

filter materials were: sawdust (Pinus radiata), sawdust and soil, sawdust and sand, 

and medium-chip woodchippings and sand. Two influent NO3-N concentrations, 200 

mg L-1 and 60 mg L-1, loaded at 2.9 to 19.4 mg NO3-N kg-1 mixture d-1, were used. 

The horizontal flow filter with a woodchip/sand mixture, loaded at 2.9 mg NO3-N kg-1 

d-1, performed best, yielding a 97% reduction in NO3-N at steady-state conditions. 

Greenan et al. (2006) investigated four different C sources - mixed with C source to 

soil volume ratios of 1 - in anaerobic batch experiments, as follows: (i) 3-10 cm long 

wood chips (predominately Quercus spp.) (ii) wood chips saturated with soybean oil 

(48% oil by weight) (iii) dried cornstalks collected after harvest, and (iv) paper fibres 

from corrugated cardboard. Over a 180 day study period, denitrification rates ranged 

from 0.427 g N kg–1 substrate d–1 for the ground cornstalks to 0.066 g N kg–1 substrate 

d–1 for the wood chips 

 

4.1.3 Implementation of PRB 

 

In PRBs, the reactive material is placed in a trench and sealed to surface level with 

clay to avoid surface - subsurface cross contamination and to achieve anaerobic 

conditions.  The reactive zone must have a higher conductivity than the surrounding 

soil to encourage flow into the reactive zone (Simon and Meggyes, 2000). Filter 

gravel should be placed at the edges of the reactive zone to stop small particles 
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washing and clogging the trench. Geotechnical considerations, such as subsurface soil 

strength and the presence of cobbles, should be considered. A temporary piezometer 

network or ground penetrating radar survey should be utilized to identify the location 

and movement of the migrating nutrient plume on-site. A trench orientated 

perpendicular to groundwater flow direction, taking annual deviations into 

consideration, should be placed at various depths, depending on average water table 

heights. It should also be placed at strategic positions near potential point pollution 

sources, soiled water installations, slurry and silage facilities, along shallow 

groundwater zones adjacent to riparian zones, ditches, or open water ways (Seong-

Chun et al., 2005).  

 

The time frame for site evaluation, hydrogeological study, engineering design and 

implementation could take from 14 to 30 weeks (Kalin, 2004). Irish farmers, under 

the REPS, must leave a 1.5 m-wide buffer strip of uncultivated land beside 

watercourses. Buffer strips may have a positive effect on P and pesticide loss, as low 

soil P concentration and permanent cover “trap” P. A trench placed at such a location 

integrates nutrient remediation and control and could potentially cut down on the 

design and implementation timeframe. A methodology suitable for Irish conditions for 

the location, construction, trench type, dimensional criteria and monitoring of a 

permeable reactive barrier from a point source has been devised (O. Fenton, 

unpublished data).  The long term performance of PRBs needs to be assessed 
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4.2 Willow and reed plantations 

 

Willows (Salix spp.) are also gaining in popularity in Ireland and elsewhere for the 

treatment of domestic and agricultural wastewater (Rosenqvist and Dawson, 2005; 

Börjesson and Berndes, 2006). A long growing season and a high nutrient retention 

capacity make them ideal for wastewater treatment (Dimitriou and Aronsson, 2004). 

The Landfill Directive, 99/31/EC (EC, 1999), forces local authorities to reduce the 

volume of organic waste disposed in landfills. To date, willows have been viewed as 

an alternative, environmentally-friendly energy source to satisfy the greenhouse gas 

(GHG) emission requirements of the Kyoto Protocol (Rice, 2003).   

 

Willows assimilate nutrients into plant biomass. They remove pollutants by directly 

assimilating them into their tissue. Biomass production in willows is dependent on the 

amount of N, P and potassium (K) that is applied to the soil (Hodson et al., 1993). 

 

Willows are normally planted at 0.75–1.5m centres between rows and at 0.5–0.6m 

distances along each row, and are harvested every 3-5 years (Aronsson et al., 2002). 

Sludge can be allowed to percolate between the willow rows through a drip irrigation 

system and is normally applied at a rate of 80 kg N ha-1 yr-1 (Aronsson et al., 2002). 

Nutrients are permanently removed from the system by annual harvesting. 

 

Compared to conventional wastewater treatment, wastewater irrigation of willow 

plantations can offer great savings. Dawson (2004) estimated that a willow area of 

approximately 3,000 ha would be required for the disposal of all domestic sewage 

sludge in Ireland. Rosenqvist and Dawson (2005) calculated that savings of around €7 
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- €18 kg-1 N could be made in a willow irrigation system compared to a conventional 

wastewater treatment plant.  

 

In Sweden, wastewater irrigation of willow plantations is now commonly used 

(Perttu, 1998; Lindoff Communications Ltd., 2004; Dimitriou and Aronsson, 2004; 

Dimitriou and Aronsson, 2005) and hydraulic loading rates of up to 600 mm yr-1, 

yielding 125 kg N ha-1, may be applied without the risk of N leaching to groundwater 

(Börjesson, 1999). In Kågeröd, southern Sweden, biologically treated wastewater 

from a population equivalent (PE) of 5000 was used for irrigation on an 11 ha willow 

plantation (Lindoff Communications Ltd., 2004). Wastewater was applied from May 

to October at an average rate of 4 – 5 mm d-1 (730 – 770 mm yr-1), giving average 

yearly N and P application rates of 72 kg N ha-1yr-1 and 10 kg P ha-1yr-1, respectively. 

Average Tot-N, Tot-P and biochemical oxygen demand (BOD) concentrations were 

reduced by 79%, 11% and 55%, respectively. Evapotranspiration was not measured in 

this study.  

 

Regular fertilization and irrigation increases the biomass and the nutrient retention 

within the willow shoot. In a study conducted in New York, Adegbidi et al. (2001) 

found that, under annual nutrient application rates of 224 kg N ha-1, 112 kg P ha-1 and 

224 kg K ha-1, drip irrigated at 20-60 mm wk-1 during the growing season, between 

2.5 Mg ha-1 yr-1 (for non-irrigated plots) and 27.5 Mg ha-1 yr-1 (for irrigated plots) of 

biomass was produced from willows. Biomass production rates of Phragmites 

australis (Cav.) Trin. Ex. Steudel, a plant commonly used in CWs for the treatment of 

wastewater, is within this range. Karunaratne et al. (2004) investigated the effects of 

harvesting P. australis in a wetland in Central Japan and found that biomass levels 
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rose to 1250 g m-2 (approximately 12.5 Mg ha-1) in July. Similar figures have been 

found in Ireland (Healy et al., 2007). P. australis does appear to have a greater ability 

to remove N and P, however. In a CW in Ireland, Healy et al. (2007) measured 

maximum nutrient retentions of approximately 15.5 mg N g-1 dry weight (DW) and 

1.6 mg P g-1 DW in P. australis. In a wetland in Northeast Italy, planted with P. 

australis, Bragato et al. (2006) measured maximum Tot-N and Tot-P concentrations 

of 27 mg N g-1 DW and 0.8 mg P g-1 DW in July. These values are far in excess of the 

measurements conducted by Adegbidi et al. (2001), where maximum nutrient 

retentions of 3.7 – 7.2 mg N g-1 DW and 0.6 – 0.7 mg P g -1 DW were measured in 

willows. 

 

5. Remediation options for agriculture in Ireland 

 

To meet the requirements of the Nitrates and WFD directives, groundwater and 

surface water remediation technologies are required to capture nutrient loss where 

nutrient management fails. An integrated approach is needed to address multiple 

simultaneous challenges of N and P losses. Consequently, in situ and pre-treatment of 

farmyard manures should integrate N remediation and P control.  

 

Low-cost, low-management remediation technologies, such as PRBs and willows, 

have good potential in Ireland because they can be implemented at farm level. As 

woodchip and woodchip mixed with soil/sand barriers may result in NO3 removal 

and, depending on hydraulic loading rate, may have a long lifespan, the growth of 

willow plantations to provide a C source for PRBs should be investigated. Batch and 

column experiments investigating the denitrification rates and required retention times 
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in PRBs to achieve water quality targets of different solid carbon media should be 

investigated. A decision support system should be developed to provide guidelines to 

farmers in the location of a PRB, on available and suitable reactive media, and 

associated costs.  

 

Buffer strips, amended with ochre, or willow plantations may also be used to treat 

surface water and runoff. Mitigation measures utilising existing agricultural 

infrastructure such as open drains and farmyard outlets should be considered, which 

divert drainage and runoff water to reactive cells, then trap sediment (particulate P) 

and sequester soluble P.  

 

Specifications for the implementation of these technologies on-site should be 

developed and future national policy needs to change to incorporate remediation 

technologies. Future work should compare the cost-benefit of implementing the 

alternative remedial technologies and estimate the economic value of such 

improvements on the ecology of Irish rivers.   

 

6. Conclusions 

 

1. Current legislation is focused on prevention of nutrient losses from 

agricultural sources. Remediation and control technologies are recommended 

to account for incidental losses. 

2. Waste products, such as alum from water treatment and ochre from acid mine 

wastewater, should be investigated for use in P control in surface water and 

dirty water. The release of heavy metals from these chemical amendments 
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should be investigated on different soil types to address WHO drinking water 

guidelines.  

3. Options for NO3 removal include in situ denitrification trenches and willow 

plantations.  
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Table 1 — Estimated agricultural organic managed waste generation in 2001 (EPA, 

2004). 

_____________________________________________________________________ 

Waste category   Waste generation   % 

     (Tonnes wet weight) 

 

Cattle manure and slurry  36,443,603    60.6 

Water (dairy only)              18,377,550    30.5 

Pig slurry    2,431,819    4.0 

Silage effluent    1,139,231    1.9 

Poultry litter    172,435    0.3 

Sheep manure    1,336,336    2.2 

Spent mushroom compost  274,050    0.5 

Total     60,170,025   
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Table 2 — Maximum  adsorption capacities (g P kg-1 substrate) of different media. 

(after Mann, 1997; Heal et al., 2005). 

_____________________________________________________________________ 

Amendment     Maximum adsorption capacity 

       g P kg-1 

Danish sands      0.02-0.13 

Gravel       0.03-0.05 

Bottom ash      0.06 

Steel furnace slag     0.38-1.4 

Blast furnace slag     0.05-0.65 

Fly ash       0.62 

Shale       0.75 

Laterite      0.75-1.38 

Zeolite       1-2.2 

Serpentinite      1 

EAF steel slag      2.2 

Polkemmet ochre     26 

Minto ochre      30.5 

_____________________________________________________________________ 
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Table 3 - Maximum values for concentrations of heavy metals in soil and sludge (for 

agricultural use)(EEC, 1986). 

Parameters mg kg-1 mg kg-1 

 Soil Sludge 

Cadmium 1 20 

Copper 50 1000 

Nickel 30 300 

Lead 50 750 

Zinc 150 2500 

Mercury 1 16 
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Table 4 - Solid carbon reactive media and nitrate removal rates. 

____________________________________________________________________________________________________________________ 

 

Reference   Experiment type Influent NO3-N  Media     Residence time NO3-N removal  

concentration          rate 

       mg L-1   % by volume   days   % 

 

Healy et al., 2006  Lab column  60   Woodchip (50%)  -   97  

Fahner, 2002   Field study  63   Sawdust (30%)  3.5-7   76 

    Lab column   12   Sawdust (30%)  0.5-7   40 

Carmichael, 1994  Lab column  50-87   Woodchip (100%)  1.6   72-83 

Schipper and Vojvodić, 

2001    Field study  5-15   Sawdust (30%)  -   95 

Robertson et al., 2000  Field study  57   Waste cellulose1 (15%) 17   80 

    Field study  1.2   Waste celluslose (15%) 30    83  

____________________________________________________________________________________________________________________ 

1 Waste cellulose = wood mulch, sawdust, leaf compost.     

 

 


