

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-05-19T18:34:41Z

Some rights reserved. For more information, please see the item record link above.

Title Smart augmentation learning an optimal data augmentation
strategy

Author(s) Lemley, Joseph; Bazrafkan, Shabab; Corcoran, Peter

Publication
Date 2017-04-24

Publication
Information

Lemley, J., Bazrafkan, S., & Corcoran, P. (2017). Smart
Augmentation Learning an Optimal Data Augmentation
Strategy. IEEE Access, 5, 5858-5869. doi:
10.1109/ACCESS.2017.2696121

Publisher Institute of Electrical and Electronics Engineers (IEEE)

Link to
publisher's

version
https://dx.doi.org/10.1109/ACCESS.2017.2696121

Item record http://hdl.handle.net/10379/14586

DOI http://dx.doi.org/10.1109/ACCESS.2017.2696121

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Smart Augmentation
Learning an optimal data augmentation strategy

Joseph Lemley
Collage of Engineering and Informatics
National University of Ireland Galway

Galway Ireland
Email: j.lemley2@nuigalway.ie

Shabab Bazrafkan
Collage of Engineering and Informatics
National University of Ireland Galway

Galway Ireland
Email: s.bazrafkan1@nuigalway.ie

Peter Corcoran
Collage of Engineering and Informatics
National University of Ireland Galway

Galway Ireland
Email: peter.corcoran@nuigalway.ie

Abstract—A recurring problem faced when training neural

networks is that there is typically not enough data to maximize

the generalization capability of deep neural networks(DNN).

There are many techniques to address this, including data

augmentation, dropout, regularization, and transfer learning. In

this paper, we introduce an additional method which we call

Smart Augmentation and we show how to use it to increase

the accuracy and reduce overfitting on a target network. Smart

Augmentation works by creating a network that learns how to

generate augmented data during the training process of the target

network in a way that reduces the loss of the target neural

network. This allows us to learn augmentations that minimize

the error of that network.

I. INTRODUCTION

In order to train a deep neural network, the first and
probably most important task is to have access to enough
labeled samples of data. Not having enough quality labeled
data will generate overfitting, which means that the network
is highly biased to the data it has seen in the training set and,
therefore will not be able to generalize the learned model to
any other samples. In [1] there is a discussion about how much
the diversity in training data and mixing different datasets can
affect the model generalization. Mixing several datasets might
be a good solution, but it is not always feasible due to lack of
accessibility. One of the other approaches to solve this problem
is using different regularization techniques. In recent years
different regularization approaches have been proposed and
successfully tested on deep neural network models. The drop-
out technique [2] and batch normalization [3] are two well-
know regularization methods used to avoid overfitting when
training deep models.

Another technique for addressing this problem is called
augmentation. Data augmentation is the process of supple-
menting a dataset with similar data that is created from the
information in that dataset. The use of augmentation in deep
learning is ubiquitous, and when dealing with images, often
includes application of rotation, translation, blurring and other
modifications to existing images that allow a network to better
generalize [4].

Augmentation serves as a type of regularization, reducing
the chance of overfitting by extracting more general infor-
mation from the database and passing it to the network.
One can classify the augmentation methods into two different
types. The first is unsupervised augmentation. In this type of
augmentation the data expansion task is done regardless of the
label of the sample. For example adding different kind of noise,
rotating or flipping the data. These kinds of data augmentations
are usually not difficult to implement.

Next there is Supervised augmentation. One of the most
challenging kind of data expansion is mixing different samples
with the same label in feature space in order to generate a
new sample with the same label. The generated sample has to
be recognizable as a valid data sample, and also as a sample
representative of that specific class. Since the label of the data
is used to generate the new sample, this kind of augmentation
is named supervised augmentation.

Many deep learning frameworks can generate augmented
data. For example, Keras [5] has a built in method to randomly
flip, rotate, and scale images during training but not all of these
methods will improve performance and should not be used
blindly. For example, on MNIST (The famous hand written
number dataset), if one adds rotation, the network will be
unable to distinguish properly between hand written 6 and 9
digits. Likewise a system that uses deep learning to classify
or interpret road signs may become incapable of discerning
left and right arrows if the training set was augmented with
by indiscriminate flipping of images.

More sophisticated types of augmentation, such as se-
lectively blending images or adding directional lighting rely
on expert knowledge. Besides intuition and experience, there
is no universal method that can determine if any specific
augmentation strategy will improve results until after training.
Since training deep neural nets is a time consuming process,
this means only a limited number of augmentation strategies
will likely be attempted before deployment of a model.

Blending several samples in the dataset in order to highlight
their mutual information is not a trivial task in practice. Which
samples should be mixed together how many of them and
how they mixed is a big problem in data augmentation using
blending techniques.

Augmentation is typically performed by trial and error,
and the types of augmentation performed are limited to the
imagination, time, and experience of the researcher. Often, the
choice of augmentation strategy can be more important than
the type of network architecture used [6]. Before Convolutional
Neural Networks (CNN) became the norm for computer vision
research, features were ”hand crafted”. Hand crafting features
went out of style after it was shown that Convolutional Neural
Networks could learn the best features for a given task. We
suggest that since the CNN can generate the best features for
some specific pattern recognition tasks, it might be able to give
the best feature space in order to merge several samples in a
specific class and generate a new sample with the same label.
Our idea is to generate the merged data in a way that produces
the best results for a specific target network through intelligent
blending of features between 2 or more samples.

II. RELATED WORK

Manual augmentation techniques such as rotating, flipping
and adding different kinds of noise to the data samples, are
described in depth in [4] and [7] which attempt to measure the
performance gain given by specific augmentation techniques.
They also provide a list of recommended data augmentation
methods.

In 2014, Srivastava et al. introduced the dropout technique
[2] aiming to reduce overfitting, especially in cases where there
is not enough data. Dropout works by temporarily removing a
unit (or artificial neuron) from the Artificial Neural Network
and any connections to or from that unit.

Konda et al. Showed that dropout can be used for data
augmentation by ”projecting the the dropout noise within a
network back into the input space”. [8]

Jaderberg et al. devised an image blending strategy as part
of their paper ”Synthetic Data and Artificial Neural Networks
for Natural Scene Text Recognition” [9]. They used what they
call “natural data blending” where each of the image layers
are blended with a randomly sampled crop of an image from
a training dataset. They note a significant (+44%) increase in
accuracy using such synthetic images when image layers are
blended together via a random process.

Another related technique is training on adversarial ex-
amples. Goodfellow et al. notes that, although augmentation
is usually done with the goal of creating images that are
as similar as possible to the natural images one expects in
the testing set, this does not need to be the case. They
further demonstrate that training with adversarial examples can
increase the generalization capacity of a network, helping to
expose and overcome flaws in the decision function [10].

The use of Generative Adversarial Neural Networks [11]
is a very powerful unsupervised learning technique that uses a
min-max strategy wherein a ’counterfeiter’ network attempts to
generate images that look enough like images within a dataset
to ’fool’ a second network while the second network learns to
detect counterfeits. This process continues until the synthetic
data is nearly indistinguishable from what one would expect
real data to look like. Generative Adversarial Neural Networks
can also be used to generate images that augment datasets, as
in the strategy employed by Shrivastav et al. [12]

Another method of increasing the generalization capacity
of a neural network is called “transfer learning”. In transfer
learning we want to take knowledge learned from one network,
and transfer it to another [13]. In the case of Convolutional
Neural Networks, when used as a technique to reduce over-
fitting due to small datasets, it is common to use the trained
weights from a large network that was trained for a specific
task and to use it as a starting point for training the network
to perform well on another task.

Batch normalization, introduced in 2015, is another pow-
erful technique. It was discovered upon the realization that
normalization need not not just be performed on the input
layer, but can also be achieved on intermediate layers. [3]

Like the above regularization methods, Smart Augmen-
tation attempts to address the issue of limited training data
to improve regularization and reduce overfitting. As with
[10], our method does not attempt to produce augmentations
that appear “natural”. Instead our network learns to combine
images in ways that improve regularization. Unlike [4] and [7],
we do not address manual augmentation, nor does our network
attempt to learn simple transformations. Unlike the approach
of image blending in [9], we do not arbitrarily or randomly
blend images. Smart augmentation can be used in conjunction
with other regularization techniques, including dropout and
traditional augmentation.

III. SMART AUGMENTATION

Smart Augmentation is the process of learning suitable
augmentations when training deep neural networks.

The goal of Smart Augmentation is to learn the best
augmentation strategy for a given class of input data. It does
this by learning to merge two or more samples in one class.
This merged sample is then used to train a target network. The
loss of the target network is used to inform the augmenter at
the same time. This has the result of generating more data for
use by the target network. This process often includes letting
the network come up with unusual or unexpected but highly
performant augmentation strategies.

During the training phase, we have two networks: Network
A, which generates data; and network B, which is the network
that will perform a desired task (such as classification). The
main goal is to train network B to do some specific task
while there are not enough representative samples in the given
dataset. To do so, we use another network A to generate new
samples. This network accepts several inputs from the same
class (the sample selection could be random, or it could use
some form of clustering, either in the pixel space or in the
feature space) and generates an output which approximates
data from that class. This is done by minimizing the loss
function LA which accepts out1 and image i as input. Where
out1 is the output of network A and mage i is a selected sample
from the same class as the input. The only constraint on the
network A is that the input and output of this network should
be the same shape and type. For example, if N samples of a
P channel image are fed to network A, the output will be a
single P channel image.

pcor
Maybe break into some sub-sections; the first could be “Training Strategy for Smart Augmentation”
Also, maybe break this single paragraph …

The loss function can be further parameterized by the
inclusion of ↵ and � as f(↵⇤LA,� ⇤LB). In the experiments
and results sections of this paper we examine how these can
impact final accuracy.

Network A can either be implemented as a single network
(figure 2), or as multiple networks, as in figure1. Using more
than one network A has the advantage that the networks can
learn class-specific augmentations that may not be suitable for
other classes, but which work well for the given class.

Network A is a neural network, such as a generative model,
with the difference that network A is being influenced by
network B in the back propagation step, and network A accepts
multiple samples as input simultaneously instead of just one
at a time. This causes the data generated by network A to
converge to the best choices to train network B for that specific
task, and at the same time it is controlled by loss function
LA in a way that ensures that the outputs are similar to
other members of its class. The overall loss function during
training is f(LA,LB) where f is a function whose output
is a transformation of LA and LB. This function could be
an epoch-dependent function i.e. the function could change
with the epoch number. In the training process, the error back-
propagates from network B to network A. This tunes network
A to generate the best augmentations for network B. After
training is finished, Network A is cut out of the model and
network B is used in the test process. The joint information
between data samples is exploited to both reduce overfitting,
and to increase the accuracy of the target network during
training.

The proposed method uses a network (network A) to learn
the best sample blending for the specific problem. The output
of network A is the used for the input of network B. The idea
is to use network A to learn the best data augmentation to
train network B. Network A accepts several samples from the
same class in the dataset, and generates a new sample from
that class, and this new sample should reduce the training loss
for network B. In figure 3 we see an output of network A
designed to do the gender classification. The image on the left
is a merged image of the other two. This image represents
a sample from the class “male” that does not appear in the
dataset, but still has the identifying features of its class.

Notice that in figure 3, an image was created with an
open mouth and open eyes from two images. The quality
of the face image produced by network A does not matter.
Only its ability to help network B better generalize. Our
approach is most applicable to classification tasks but may also
have applications in any approach where selective blending of
sample features improves performance. Our observations show
that this approach can reduce overfitting and increase accuracy.
In the following sections we evaluate several implementations
of our smart augmentation technique on various datasets to
show how it can improve accuracy and prevent overfitting. We
also show that with smart augmentation, we can train a very
small network to perform as well as (or better than) a much
larger network that produces state of the art results.

IV. METHODS

Experiments were conducted on NVIDIA Titan X GPU’s
running a pascal architecture with python 2.7, using the Theano
[14] and Lasange frameworks.

A. Data Preparation

To evaluate our method, we chose 4 datasets with charac-
teristics that would allow us to examine the performance of the
algorithm on specific types of data. Since the goal of our paper
is to measure the impact of the proposed technique, we do not
attempt to provide a comparison of techniques that work well
on these databases. For such a comparison we refer to [15] for
gender datasets or [16] for the places dataset.

1) Highly constrained faces dataset (db1): Our first
dataset, db1 was composed from the AR faces database [17]
with a total of 4,000 frontal faces of male and female subjects.
The data was split in to subject exclusive training, validation,
and testing sets, with 70% for training, 20% for validation,
and 10% for testing. All face images were reduced to 96X96
grayscale with pixel values normalized between 0 and 1.

2) Augmented, highly constrained faces dataset (db1a):
To compare traditional augmentation with smart augmentation
and to examine the effect of traditional augmentation on smart
augmentation, we created an augmented version of db1 with
every combination of flipping, blurring, and rotation (-5,-
2,0,2,5 degrees with the axis of rotation at the center of the
image). This resulted in a larger training set of 48360 images.
The test and validation sets were unaltered from db1. The data
was split in to a subject exclusive training, validation, and
testing sets with 70% for training, 20% for validation, and
10% for testing. All face images were reduced to 96X96 with
pixel values normalized between 0 and 1.

3) FERET: Our second dataset, db2, was the FERET
dataset. We converted FERET to grayscale and reduced the
size of each image to 100X100 with pixel values normalized
between 0 and 1. The data was split in to subject exclusive
training, validation, and testing sets, with 70% for training,
20% for validation and 10% for testing.

Color FERET [18] Version 2 was collected between De-
cember 1993 and August 1996 and made freely available with
the intent of promoting the development of face recognition
algorithms. The images are labeled with gender, pose and
name.

Although FERET contains a large number of high quality
images in different poses and with varying face obstructions
(beards, glasses, etc), they all have certain similarities in qual-
ity, background, pose, and lighting that make them very easy
for modern machine learning methods to correctly classify. In
our experiments, we use all images in FERET for which gender
labels exist.

4) Adience: Our third dataset, db3, was Adience. We
converted Adience to grayscale images with size 100x100 and
normalized the pixel values between 0 and 1. The data was
split in to subject exclusive training, validation, and testing
sets, with 70% for training, 20% for validation and 10% for
testing.

pcor
Subsection: The Generative Network A and Loss Function

pcor
Is the multi-class network A idea something that can be separated into a second paper?

pcor
Maybe break paragraph?

pcor
Subsection: “How Smart Augmentation Works”

pcor
Can we try to advance Figures 1,2,3 so they are closer to where this is discussed?
Actually I think you will submit text separately from Figures for IEEE Access so it is up to the editor to figure out this arrangement of text & figures ….

Fig. 1: Smart augmentation with more than one network A

Fig. 2: Diagram illustrating the reduced smart augmentation concept with just one network A

Fig. 3: The image on the left is created by a learned combi-
nation of the two images on the right. This type of image
transformation helped increase the accuracy of network B.
The image was not produced to be an ideal approximation
of a face but instead contains features that helped network B
better generalize the concept of gender which is the task it was
trained for.

5) DB4: Our fourth dataset, db4, was the MIT places
dataset [16]. The MIT PLACES dataset is a machine learning
database containing has 205 scene categories and 2.5 million
labeled images.

Fig. 4: Arbitrarily selected images from FERET demonstrate
similarities in lighting, pose, subject, background, and other
photographic conditions.

The Places Dataset is unconstrained and includes complex
scenery in a variety of lighting conditions and environments.

Fig. 5: Arbitrarily selected images from the Adience show
significant variations in lighting, pose, subject, background,
and other photographic conditions.

We restricted ourselves to just the first two classes in the
dataset (Abbey and Airport). Pixel values were normalized
between 0 and 1. The ”small dataset,” which had been rescaled
to 256x256 with 3 color channels, was used for all experiments
without modification except for normalization of the pixel
values between 0 and 1.

Fig. 6: Example images from the MIT places dataset showing
two examples from each of the two classes (abbey and airport)
used in our experiments.

V. EXPERIMENTS

In these experiments, we call network B the network that
is being trained for a specific task (such as classification). We
call network A the network that learns augmentations that help
train network B.

All experiments are run for 1000 epochs. The test accuracy
reported is for the network that got the highest score on the
validation set during those 1000 epochs.

To analyze the effectiveness of Smart Augmentation, we
performed 30 experiments using 4 datasets with different
parameters. A brief overview of the experiments can be seen in
Table I. The experiments were conducted with the motivation
of answering the following questions:

1) Is there any difference in accuracy between using smart
augmentation and not using it? (Is smart augmentation
effective?)

2) If smart augmentation is effective, is it effective on a
variety of datasets?

3) As the datasets become increasingly unconstrained, does
smart augmentation perform better or worse?

4) What is the effect of increasing the number of channels
in the smart augmentation method?

5) Can smart augmentation improve accuracy over tradi-
tional augmentation?

6) If smart augmentation and traditional augmentation are
combined, are the results better or worse than not com-
bining them?

7) Does altering the ↵ and � parameters change the results?
8) Does Smart Augmentation increase or decrease overfitting

as measured by train/test loss ratios?

9) If smart augmentation decreases overfitting, can we use
it to replace a large complex network with a simpler one
without losing accuracy?

10) What is the effect of the number of network A’s on the
accuracy? Does training separate networks for each class
improve the results?

As listed below, we used three neural network architectures
with varied parameters and connection mechanisms. In our
experiments, these architectures were combined in various
ways as specified in table I.

• Network B1 is a simple, small Convolutional neural
network, trained as a classifier, that takes an image as
input, and outputs class labels with a softmax layer. This
network is illustrated in figure 7.

• Network B2 is a unmodified implementation of VGG16
as described in [19]. Network B2 is a large network that
takes an image as input, and outputs class labels with a
softmax layer.

• Network A is a Convolutional neural network that takes
one or more images as input and outputs a modified
image. The details of this network can be seen in figure
[insert figure number here]

Fig. 7: Illustration of network B1

Fig. 8: Illustration of network A

A. Smart Augmentation with one network A on the gender
classification task

Experiments 1-8, 19,22, and 24 as seen in table I were
trained for gender classification using the same technique as
illustrated in figure 9. In these experiments, we use smart
augmentation to train a network (network B) for gender
classification using the specified database.

Fig. 9: Diagram of simplified implementation of Smart Augmentation showing network A and network B

TABLE I: Full listing of experiments.

Exp DB Net A A ch Net B ↵ � LR Momentum
1 db1 1 1 B 1 0.3 0.7 0.01 0.9
2 db1 1 2 B 1 0.3 0.7 0.01 0.9
3 db1 1 3 B 1 0.3 0.7 0.01 0.9
4 db1 1 4 B 1 0.3 0.7 0.01 0.9
5 db1 1 5 B 1 0.3 0.7 0.01 0.9
6 db1 1 6 B 1 0.3 0.7 0.01 0.9
7 db1 1 7 B 1 0.3 0.7 0.01 0.9
8 db1 1 8 B 1 0.3 0.7 0.01 0.9
9 db1 2 1 B 1 0.3 0.7 0.005 0.9
10 db1 2 2 B 1 0.3 0.7 0.005 0.9
11 db1 2 3 B 1 0.3 0.7 0.005 0.9
12 db1 2 4 B 1 0.3 0.7 0.005 0.9
13 db1 2 5 B 1 0.3 0.7 0.005 0.9
14 db1 2 6 B 1 0.3 0.7 0.005 0.9
15 db1 2 7 B 1 0.3 0.7 0.005 0.9
16 db1 2 8 B 1 0.3 0.7 0.005 0.9
17 db1 NA NA B 1 NA NA 0.01 0.9
18 db1a NA NA B 1 NA NA 0.01 0.9
19 db1a 1 2 B 1 0.3 0.7 0.01 0.9
20 db1a 2 2 B 1 0.3 0.7 0.005 0.9
21 db2 NA NA B 1 NA NA 0.01 0.9
22 db2 1 2 B 1 0.3 0.7 0.01 0.9
23 db3 NA NA B 1 NA NA 0.01 0.9
24 db3 1 2 B 1 0.3 0.7 0.01 0.9
25 db4 NA NA B 2 NA NA 0.005 0.9
26 db4 NA NA B 1 NA NA 0.005 0.9
27 db4 1 2 B 1 0.3 0.7 0.01 0.9
28 db4 1 2 B 1 0.7 0.3 0.01 0.9
29 db4 2 2 B 1 0.7 0.3 0.005 0.9
30 db4 2 2 B 1 0.3 0.7 0.005 0.9

The first, k images are randomly selected from the same
class (male or female) in the dataset. These k samples are
merged into k channels of a single sample. The grayscale
values of the first image, img0, are mapped to channel 0 and
the grayscale values of the second image im1 are mapped to
channel 1 and so on until we reach the number of channels
specified in the experiments table. This new k channel image
is fed into the network A. Network A is a fully convolutional
neural network (See figure 8) which accepts images as the
input and gives the images with the same size at the output in
single channel.

An additional grayscale image is then randomly selected
from the same class in the dataset (this image should not be
any of those images selected in step 1). The loss function
for this network A is calculated as the mean squared error
between this randomly selected image and the output of
network A. The output of network A, and the target image
are then fed into network B as separate inputs. Network B is
a typical deep neural network with two convolutional layers
followed by batch normalization and max-pooling steps after
each convolutional layer. Two fully connected layers are placed
at the end of the network. The first of these layers has 1024
units and the second dense layer is made of two units as the
output of network B using softmax. Each dense layer takes
advantage of the drop-out technique in order to avoid over-
fitting. The loss function of network B is calculated as the
categorical cross-entropy between the outputs and the targets.

The total loss of the whole model is a linear combination of
the loss functions of two networks. This approach is designed
to train a network A that generates samples which reduces the
error for network B. The validation loss was calculated only
for network B, without considering network. This allows us to
compare validation loss with and without smart augmentation.

Our models were trained using Stochastic Gradient De-
scent with Nestrov Momentum [20], learning rate 0.01 and
momentum 0.9. The lasagne library used to train the network
in python.

In these experiments, we varied the number of input
channels and datasets used. Specifically, we trained a network
B from scratch with 1-8 input channels with a single network A
on db1, 2 channels on network A for db2 and 3, and 2 channels
on network db1a as shown in the table of experiments.

B. Smart Augmentation with two network A’s on the gender
classification task

In experiments 9-16 and 20 we evaluate a different im-
plementation of smart augmentation, containing a separate
network A for each class. As before, the first k images are
randomly selected from the same class (male or female) in
the dataset. These k samples are merged into k channels of a
single sample.The grayscale values of the first image, img0,
are mapped to channel 0 and the grayscale values of the second
image, im1, are mapped to channel 1, and so on until we reach
the number of channels specified in the experiments table just
as before. Since we now have two network A’s, it is important
to separate out the loss functions for each network as illustrated
in figure 9.

All other loss functions are calculated the same way as
before.

One very important difference is the updated learning rate
(0.005). While performing initial experiments we noticed that
using a learning rate above 0.005 led to the dying relu problem
and stopped effective learning within the first two epochs. This
network is also more sensitive to variations in batch size.

The goal of these experiments was to examine how us-
ing multiple network As impacts accuracy and over fitting
compared to just using one network A. We also wanted to
know if there were any differences when trained on a manually
augmented database (experiment 20).

C. Training without smart augmentation on the gender clas-
sification task

In these experiments we train a network (network B) to
perform gender classification without applying network A
during the training stage. These experiments (23, 21, 18, and
17) are intended to serve as a baseline comparison of what
network B can learn without smart augmentation on a specific
dataset (db3 ,db2, db1a, and db1 respectively). In this way we
measure any improvement given by smart augmentation. A full
implementation of Network B is shown in figure 7.

This network has the same architecture as the network
network B presented in the previous experiment except that
it does not utilize a network A.

As before, two fully connected layers are placed at the end
of the network. The first of these layers has 1024 units, and
the second dense layer has two units (one for each class). Each
dense layer takes advantage of the drop-out technique in order
to avoid over-fitting.

All loss functions (training, validation, and testing loss)
were calculated as the categorical cross-entropy between the
outputs and the targets.

As before, models were trained using Stochastic Gradient
Descent with Nestrov Momentum [20], learning rate 0.01 and
momentum 0.9. The lasagne library was used to train the
network in python.

D. Experiments on the places dataset

In the previous experiments in this section, we used 3
different face datasets. In experiments 25 - 30 we examine
the suitability of Smart Augmentation with color scenes from
around the world from the MIT Places dataset to evaluate our
method on data of a completely different topic. We varied
the ↵ and � parameter in our global loss function so that we
could identify how they influence results. Unlike in previous
experiments, we also retained color information.

Experiment 25 utilized a VGG16 trained from scratch as
a classifier, chosen because VGG16 models have performed
very well on the places dataset in public competitions [16].
The input to network A was 256x256 RGB images and the
output was determined by a 2 class softmax classifier.

In experiment 26 we use a network B, identical in all
respects to the one used in the previous subsection, except
that we use the lower learning rate specified in the experiments
table and take in color images about places instead of gender.

These two experiments (25,26) involved simple classifiers
to establish a baseline against which other experiments on the
same dataset could be evaluated.

In experiments 27-28, k images were randomly selected
from the same class (abbey or airport) in the dataset. These k
samples are merged into k ⇤ 3 channels of a single sample.
The values of the first three channels of image img0 are
mapped to channel 0-2, and the first three channels of the
second image im1 are mapped to channels 3-5, and so on, until
we reach the number of channels specified in the experiments
table multiplied by the number of color channels in the source
images. This new k ⇤ 3 channel image is fed into the network
A. Network A is a fully convolutional neural network) which
accepts images as the input, and outputs a single color image.

An additional image is then randomly selected from the
same class in the dataset. The loss function for network A is
calculated as the mean squared error between the randomly
selected image and the output of network A. The output of
network A, and the target image are then fed into network B
as separate inputs. Network B is a typical deep neural network
with two convolutional layers followed by batch normalization
and max-pooling steps after each convolutional layer. Two
fully connected layers are placed at the end of the network. The
first of these layers has 1024 units and the second dense layer
is made of two units as the output of network B using softmax.
Each dense layer takes advantage of the drop-out technique in
order to avoid over-fitting. The loss function of network B is
calculated as the categorical cross-entropy between the outputs
and the targets.

The total loss of the whole model is a linear combination of
the loss functions of two networks. This approach is designed
to train a network A that generates samples that reduce the
error for network B. The validation loss was calculated only for
network B, without considering network A. This allows us to
compare validation loss with and without smart augmentation.

Our models were trained using Stochastic Gradient De-
scent with Nestrov Momentum [20], learning rate 0.005 and
momentum 0.9. The lasagne library used to train the network
in python.

pcor
Do you need a citation ?
Also, should you italicize or put dying relu into quotes -“dying relu” problem

Fig. 10: Diagram of our implementation of Smart Augmentation with one network A for each class

Fig. 11: Diagram of implementation of network B without
Smart Augmentation

In these experiments, we varied the number of input
channels and datasets used. Specifically, we trained a network
B from scratch with 1-8 input channels on network A on db1,
2 channels on network A for db2 and 3, and 2 channels on
network db1a as shown in the table of experiments.

In experiments 29-30, k images are randomly selected from
the same class (abbey or airport) in the dataset. These k
samples are merged into k ⇤ 3 channels of a single sample.
The values of the first three channels in image img0 are
mapped to channel 0-2 and the first three channels of the
second image im1 are mapped to channels 3-5 and so on until
we reach the number of channels specified in the experiments
table multiplied by the number of color channels in the source
images. This new k ⇤ 3 channel image is fed into the network
A. Network A is a fully convolutional neural network which
accepts images as the input and outputs a single color image.

An additional image is then randomly selected from the
same class in the dataset. The loss function for each network A
is calculated as the mean squared error between the randomly
selected image and the output of network A. The output of
network A, and the target image are then fed into network B
as separate inputs. Network B is a typical deep neural network
with two convolutional layers followed by batch normalization
and max-pooling steps after each convolutional layer. Two
fully connected layers are placed at the end of the network. The
first of these layers has 1024 units, and the second dense layer
is made of two units as the output of network B using softmax.
Each dense layer takes advantage of the drop-out technique in
order to avoid over-fitting. The loss function of network B is
calculated as the categorical cross-entropy between the outputs
and the targets.

pcor
This font is a bit large compared to the rest …

pcor
Some of the font is still marginal; I appreciate that it is a large figure and this poses challenges; maybe you could use ‘break-out’ boxes?

pcor
The ‘arrow’ here is huge - I couldn’t figure out how to re-size it, but this is intended as a crude example of a break-out so you can use a larger font for some of the text …

TABLE II: Results of experiments on Face Datasets

Experiments on Face Datasets

Dataset #Net As Input Channels Augmented Test Accuracy

AR Faces 1 1 no 0.927746
AR Faces 1 2 no 0.924855
AR Faces 1 3 no 0.950867
AR Faces 1 4 no 0.916185
AR Faces 1 5 no 0.910405
AR Faces 1 6 no 0.933526
AR Faces 1 7 no 0.916185
AR Faces 1 8 no 0.953757
AR Faces 2 1 no 0.869942188
AR Faces 2 2 no 0.956647396
AR Faces 2 3 no 0.942196548
AR Faces 2 4 no 0.942196548
AR Faces 2 5 no 0.907514453
AR Faces 2 6 no 0.933526039
AR Faces 2 7 no 0.916184962
AR Faces 2 8 no 0.924855471
AR Faces 0 NA no 0.881502867
AR Faces 0 NA yes 0.890173435
AR Faces 1 2 yes 0.956647396
AR Faces 2 2 yes 0.956647396
Adience 0 NA no 0.700206399
Adience 1 2 no 0.760577917
FERET 0 NA no 0.835242271
FERET 1 2 no 0.884581506

TABLE III: Results of experiments on Place Dataset

Experiments on MIT places dataset

#Net As Target Network Test Accuracy A B

0 VGG16 98.5 NA NA
0 Small net B 96.5 NA NA
1 Small net B 98.75 0.3 0.7
1 Small net B 99% 0.7 0.3
2 Small net B 99% 0.7 0.3
2 Small net B 97.87% 0.3 0.7

The total loss of the whole model is a linear combination
of the loss functions of the two networks. This approach is
designed to train a network A that generates samples that
reduce the error for network B. The validation loss was
calculated only for network B, without considering network
A. This allows us to compare validation loss with and without
smart augmentation.

Our models were trained using Stochastic Gradient Descent
with Nestrov Momentum [20], learning rate 0.005 and momen-
tum 0.9. The lasagne library was used to train the network in
python.

In these experiments, we varied the number of input
channels and datasets used. Specifically, we trained a network
B from scratch with 1-8 input channels on network A on db1,
2 channels on network A for db2 and 3, and 2 channels on
network db1a as shown in the table of experiments.

VI. RESULTS

The results of experiments 1-30 as shown in Table I are
listed in tables II and III.

A. Smart Augmentation with one network A on the gender
classification task

In figure 12, we show the training and validation loss
for experiments 1 and 17. As can be observed , the rate of
overfitting was greatly reduced when smart augmentation was
used compared to when it was not used.

One can see how the smart augmentation technique could
prevent network B from overfitting in the training stage. The
smaller difference between training loss and validation loss
caused by the smart augmentation technique shows how this
approach helps the network B to learn more general features
for this task. Network B also had higher accuracy on the test
set when trained with smart augmentation (92% compared to
88 percent without).

In figures 13 and 14 we show examples of the kinds of
images network A learned to generate. In these figures, the
image on the left side is the blended image of the other two
images produced by network A.

We observe an improvement in accuracy from 83.52% to
88.46% from smart augmentation on Feret with 2 inputs and
an increase from 70.02% to 76.06% on the adience dataset.

We see that there is no noticeable pattern when we vary
the number of inputs for network A. Despite lack of a pattern,
a significant difference was observed with 8 and 3 channels
providing the best results at 95.38% and 95.09% respectively.
At the lower end, 7, 5, and 4 channels performed the worst,
with accuracies of 91.62%, 91.04%, and 91.04%.

For comparison, the accuracy without network A was:
88.15%. We suspect that much of the variation in accuracy
reported above may be due to chance. Since in this particular
experiment, images are chosen randomly there may be times
when 2 or more images with very helpful mutual information
are present by chance and the opposite is also possible. It is
interesting that when 3 and 8 channels were used for network
A, the accuracy was over 95%.

B. Smart augmentation and Traditional Augmentation

We note that traditional augmentation improved the accu-
racy from 88.15% to 89.08% without smart augmentation on
the gender classification task. When we add smart augmenta-
tion we realize an improvement in accuracy to 95.66%

The results of the same experiment when we used 2 net-
works A’s was also 95.66 % which seems to indicate that both
configurations may have found the same optima when smart
augmentation was combined with traditional augmentation.

This demonstrates that smart augmentation can be used
with traditional augmentation to further improve accuracy. It
is clear that in all cases examined so far, smart augmenta-
tion performed better than traditional augmentation. However,
since there are no practical limits on the types of traditional
augmentation that can be performed, there is no way to
guarantee that manual augmentation could not find a better
augmentation strategy. This is not a major concern since we
do not claim that smart augmentation should replace traditional
augmentation. We only claim that smart augmentation can help
with regularization.

pcor
Should you discuss these a bit … ?
The cupboard seems a bit bare here …

pcor
This is an important statement, but its kinda ‘hidden’ here; note my comments on Fig 12; maybe you should repeat this in the figure caption to make the point clear ?

pcor
Where do you get the 92% Vs 88% numbers? I don’t see in tables II or III?

pcor
I’m confused, these were for non-Augmented datasets?

pcor
So this is your baseline? Maybe state that near the start, rather than at the end of this discussion … ?

pcor
Looking back at the initial section discussion ‘Smart Augmentation’ I have some suggestions to ‘assist’ dumb-asses like myself to better understand the later ’outputs’ …

Fig. 12: Training and validation losses for experiments 1 and 17, showing reductions in overfitting by using Smart Augmentation

Fig. 13: The image on the left is a learned combination of the
two images on the right as produced by network A

Fig. 14: The image on the left is a learned combination of the
two images on the right as produced by network A

C. Smart Augmentation with two network A’s on the gender
classification task

In this subsection we discuss the results of our two network
architecture when trained on the gender classification set.

These experiments show that approaches which use a
distinct network A for each class, tend to slightly outperform
networks with just 1 network A. This seems to provide support
for our initial idea that one network A should be used for
each class so that class-specific augmentations could be more
efficiently learned. If the networks with just 1 and 0 input
channels are excluded, we see an average increase in accuracy
from 92.94% to 93.19% when smart augmentation is used,
with the median accuracy going from 92.49% to 93.35%.

There is only one experiment where smart augmentation
performed worse than not using smart augmentation. This can
be seen in the 9th row of table II where we use only one
channel which caused the accuracy to dip to 86.99%, con-
trasted with 88.15% when no smart augmentation is used. This
is expected because when only one channel is used, mutual
information can not be effectively utilized. This experiment
shows the importance of always using at least 2 channels.

D. Experiments on the places dataset

As with previously discussed results, when the places
dataset is used, networks with multiple network A’s performed
slightly better. We also notice that when ↵ is higher than � an
increase in accuracy is realized.

The most significant results of this set of experiments
is the comparison between smart augmentation, VGG 16,
and network B trained alone. Note that a small network B
trained alone (no smart augmentation) had an accuracy of
96.5% compared to VGG 16 (no smart augmentation) at 98.5.
When the same small network B was trained with smart
augmentation we see accuracies ranging from 98.75% to 99%
which indicates that smart augmentation, in some cases, can
allow a much smaller network to replace a larger network.

pcor
What are we looking at on the Y-axis?

It seems that ‘trainloss’ gets to zero faster without augmentation? [I would think getting the ‘loss’ to zero is goal?
Similarly validation seems to be higher without augmentation? … but then I never cease to be amazed at my own ignorance; it knows few bounds ;-]

pcor
Should you keep this idea for a follow-on paper? Especially if you have more experiments in the pipeline?

VII. DISCUSSION AND CONCLUSION

In this paper we discussed a new regularization approach,
called “Smart Augmentation” to automatically learn suitable
augmentations during the process of training a deep neural
network. We focus on learning augmentations that take advan-
tage of the mutual information within a class. The proposed
solution was tested on progressively more difficult datasets
starting with a highly constrained face database and ending
with a highly complex and unconstrained database of places.
This indicates that our method is appropriate for a wide range
of tasks and demonstrates that it is not biased to any particular
type of image data.

Our experiments showed that the augmentation process can
be automated, specifically in non trivial cases where two or
more samples of a certain class are merged in non linear ways
resulting in improved generalization of a target network. Our
results indicate that a deep neural network can be used to
learn the augmentation task at the same time the task is being
learned. We have demonstrated that smart augmentation can
be used to reduce overfitting during the training process and
reduce the error during testing.

No linear correlation between the number of samples mixed
by network A and accuracy was found so long as at least 2
samples are used.

We found that smart augmentation is effective at reducing
error and decreasing overfitting and that this is true regardless
of how unconstrained the database is. In our experiments we
were able to achieve better accuracy with smart augmentation
than with traditional augmentation alone. We found that al-
tering the ↵ and � parameters of the loss function slightly
impacts results but more experiments are needed to identify if
optimal parameters can be found.

Finally, we found that Smart Augmentation on a small net-
work allowed us to achieve better results than those obtained
by a much larger network (VGG 16).

Future work may include expanding Smart Augmentation
to learn other types of augmentation strategies and performing
experiments on larger datasets with significantly more classes.
A statistical study to identify the number of channels that give
the highest probability of obtaining good results could also be
useful.

VIII. ACKNOWLEDGEMENTS

This research is funded under the SFI Strategic Partnership
Program by Science Foundation Ireland (SFI) and FotoNation
Ltd. Project ID: 13/SPP/I2868 on Next Generation Imaging
for Smartphone and Embedded Platforms. This work is also
supported by an Irish Research Council Employment Based
Programme Award.

We gratefully acknowledge the support of NVIDIA Cor-
poration with the donation of a Titan X GPU used for this
research.

REFERENCES

[1] S. Bazrafkan, T. Nedelcu, P. Filipczuk, and P. Corcoran, “Deep learning
for facial expression recognition: A step closer to a smartphone that
knows your moods,” in IEEE International Conference on Consumer
Electronics (ICCE), 2017.

[2] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting.” Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[3] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[4] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best practices for
convolutional neural networks applied to visual document analysis.” in
ICDAR, vol. 3, 2003, pp. 958–962.

[5] F. Chollet, “Keras,” https://github.com/fchollet/keras, 2015.
[6] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT

Press, 2016, http://www.deeplearningbook.org.
[7] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Return

of the devil in the details: Delving deep into convolutional
nets,” CoRR, vol. abs/1405.3531, 2014. [Online]. Available:
http://arxiv.org/abs/1405.3531

[8] K. Konda, X. Bouthillier, R. Memisevic, and P. Vincent, “Dropout as
data augmentation,” arXiv preprint arXiv:1506.08700, 2015.

[9] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman,
“Synthetic data and artificial neural networks for natural scene text
recognition,” CoRR, vol. abs/1406.2227, 2014. [Online]. Available:
http://arxiv.org/abs/1406.2227

[10] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[11] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems, 2014, pp. 2672–
2680.

[12] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb,
“Learning from simulated and unsupervised images through adversarial
training,” arXiv preprint arXiv:1612.07828, 2016.

[13] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transac-
tions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–
1359, 2010.

[14] Theano Development Team, “Theano: A Python framework
for fast computation of mathematical expressions,” arXiv e-
prints, vol. abs/1605.02688, May 2016. [Online]. Available:
http://arxiv.org/abs/1605.02688

[15] J. Lemley, S. Abdul-Wahid, D. Banik, and R. Andonie, “Comparison of
recent machine learning techniques for gender recognition from facial
images,” in 27th Modern Artificial Intelligence and Cognitive Science
Conference, 2016.

[16] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learning
deep features for scene recognition using places database,” in Advances
in neural information processing systems, 2014, pp. 487–495.

[17] A. Martinez and R. Benavente, “The ar face database,” CVC Technical
Report #24, Tech. Rep., 1998.

[18] P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss, “The feret evalua-
tion methodology for face-recognition algorithms,” IEEE Transactions
on pattern analysis and machine intelligence, vol. 22, no. 10, pp. 1090–
1104, 2000.

[19] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[20] I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton, “On the
importance of initialization and momentum in deep learning.” ICML
(3), vol. 28, pp. 1139–1147, 2013.

pcor
There should be an IRCSET grant number associated with you - try to include please; keeps them happy!

pcor
“… data regularization approach …” ?

pcor
The various experiments presented in this work demonstrate that …

pcor
As a primary conclusion these experiments … demonstrate … (try to avoid the first person … generally not best style for archival papers; some reviewers hate it … ‘demonstrate’ is a bit more formal than ‘show’ present tense is maybe better …)

pcor
The results indicate …

pcor
In this way …

pcor
It is worthwhile summarising a number of additional observations and conclusions from the various experiments documented in this research. Firstly, no correlation …

pcor
Secondly, it was shown that …

pcor
Thirdly, these experiments demonstrated that better accuracy could be achieved …

pcor
it was found that altering …

pcor
This will help enable more practical implementations of CNN networks for use in embedded systems and consumer devices where the large size of these networks can limit their usefullness.

pcor
… learn more sophisticated augmentation strategies …

pcor
… larger numbers of data classes …

pcor
… optimal results …

pcor
Should you include (at the end or beginning of this section?) a statement summarising that “SA has shown the potential to increase accuracy by demonstrably significant measures on all training datasets tested. In addition is has shown potential to achieve similar or improved performance levels with significantly smaller network sizes in a number of tested cases.” … or something to that effect … this is your main statement about SA. You might also insert this into the abstract as it will encourage people to read the paper!

