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Enhanced Real-Time Face Models from Stereo
Imaging for Gaming Applications

Mircea C. Ionita, Istvan Andorko and Peter Corcoran, Senior Member IEEE
College of Engineering & Informatics, National University of Ireland Galway, Galway, Ireland

Abstract—Techniques for improved 2D active appearance face
models are presented. When these are applied to stereoscopic
image pairs we show that sufficient information on image depth
is obtained to generate an approximate 3D face model. Two
techniques are investigated, the first based on 2D+3D AAMs and
the second using methods based on thin plate splines. The
resulting 3D models can offer a practical real-time face model
which is suitable for a range of applications in computer gaming.
Due to the compact nature of AAMs these are also very suitable
for use in embedded devices such as gaming peripherals.

Keywords — AAM; face models; stereo imaging; game
aplications; user interfaces.

L INTRODUCTION

Face detection and tracking technology has become
commonplace in digital cameras in the last year or so. All of
the practical embodiments of this technology are based on Haar
classifiers and follow some variant of the classifier cascade
originally proposed by Viola and Jones [8]. These Haar
classifiers are rectangular and by computing a grayscale
integral image mapping of the original image it is possible to
implement a highly efficient multi-classifier cascade. These
techniques are also well suited for hardware implementations
[23].

Now, despite the rapid adoption of such in-camera face
tracking, the tangible benefits are primarily in improved
enhancement of the global image. An analysis of the face
regions in an image enables improved exposure and focal
settings to be achieved. However current techniques can only
determine the approximate face region and do not permit any
detailed matching to facial orientation or pose. Neither do they
permit matching to local features within the face region.
Matching to such detailed characteristics of a face region
would enable more sophisticated use of face data and the
creation of real-time facial animations for use in, for example,
gaming avatars. Another field of application for next-
generation gaming technology would be the use of real-time
face models for novel user interfaces employing face data to
initiate game events, or to modify difficult levels based on the
facial expression of a gamer.

In this paper we investigate a particular class of 2D affine
models, known as active appearance models (AAM), which are
relatively fast and are sufficiently optimal to be suitable for in-
camera implementations. To improve the speed and robustness
of these models we have investigated several enhancements, in
particular we describe improvements to (i) deal with directional
lighting effects and (ii) make use of the full color range to
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improve accuracy and convergence of model to a detected face
region.

Additionally we present preliminary investigations into the
use of stereo imaging to improve model registration by using
two real-time video images with slight variations in spatial
perspective. As AAM models are essentially 2D affine models
the use of a real-time stereo video stream opens interesting
possibilities to create a full 3D face model from the 2D real-
time models we currently employ.

In section II we do an overview of these models and
describe the principle steps in constructing simple AAM
models; in section III we focus on enhancement to handle
directional lighting and present some results and examples; we
also investigate the use of the full color range in such models
and demonstrate that color information can be used
advantageously to improve both the accuracy and speed of
convergence of the model; we discuss here as well results for
one example usage of such models, a method for performing
face recognition; comparative analysis shows that results from
our improved model are significantly better than those obtained
from a conventional AAM or from the well-known eigenfaces
method for performing face recognition; in section IV we
present a differential stereo model which can be used to further
enhance model registration and which offers the means to
extend our 2D real-time models to a pseudo 3D model; in
section V we present an approach for generating realistic 3D
avatars based on a computationally reduced thin plate spline
warping technique; the method incorporates modeling
enhancements described in sections III and IV; finally, in
section VI we summarize our conclusions and provide a further
discussion of the potential for use of AAM models across a
range of gaming applications.

II.  AAM OVERVIEW

This section explains the fundamentals of creating a
statistical model of appearance and of fitting said model to
image regions.

A.  Statistical Models of Appearance

AAM was proposed by Cootes et al. [1] in 1998 as a
deformable model, capable of interpreting and synthesizing
new images of the object of interest. Statistical Models of
Appearance represent both the shape and texture variations and
the correlations between them for a particular class of objects.
Example members of the class of objects to be modeled are
annotated by a number of landmark points. The shape is
defined by the number of landmarks chosen to best depict the
contour of the object of interest, in our case a person's face.
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B.  Model Fitting to an Image Region

After a statistical model of appearance is created, an AAM
algorithm can be employed to fit the model to a new, unseen,
image region. The statistical model is linear in both shape and
texture. However, fitting the model to a new image region is a
non-linear optimization process. The fitting algorithm works by
minimizing the error between a query image and the equivalent
model-synthesized image.

In this paper we use an optimization scheme which is
robust to directional variations in illumination. This relies on
the fact that lighting information is decoupled from facial
identity information. This can be seen as an adaptation of the
method proposed by Batur et al [2]. These authors use an
adaptive gradient where the gradient matrix is linearly adapted
according to the texture composition of the target image,
generating an improved estimate of the actual gradient. In our
model the separation of texture into lighting dependent and
lighting independent subspaces enables a faster adaptation of
the gradient.

C. Initialization of the Model within an Image

Prior to implementing that AAM fitting procedure it is
necessary to initialize the model within an image. To detect
faces we employ a modified Viola-Jones face detector [8]
which can accurately estimate the position of the eye regions
within a face region. Using the separation of the eye regions
also provides an initial size estimate for the model fitting. The
speed and accuracy of this detector enables us to apply the
AAM model to large unconstrained image sets without a need
to pre-filter or crop face regions from the input image set.

III.  MobeL ENHANCEMENTS — ILLUMINATION AND MULTI-
CHANNEL COLOUR REGISTRATION

A. Building an Initial Identity Model

The reference shape used to generate the texture vectors
should be the same one for all models, i.e. either identity or
directional lighting models. Our goal is to determine
specialized subspaces, such as the identity subspace or the
directional lighting subspace.

We first need to model only the identity variation
between individuals. For training this identity-specific model
we only wuse images without directional lighting
variation. Ideally these face images should be obtained in
diffuse lighting conditions. Textures are extracted by
projecting the pixel intensities across the facial region, as
defined by manual annotation (see Fig. 1) into the reference
shape — chosen as the mean shape of the training data.

Fig. 1: Example of annotations used for Yale B Database

The number of landmark points used should be kept fixed
over the training data set. In addition to this, each landmark
point must have the same face geometry correspondence for

all images. The landmarks should predominantly target
fiducial points, which permit a good description of facial
geometry, allowing as well the extraction of geometrical
differences between different individuals. The facial textures
corresponding to images of individuals in the Yale database
with frontal illumination are represented in Fig. 2(a)

Fig. 2: (a) Variation between individuals; (b) estimated albedo of the
individuals;(c) albedo eigen-textures with 95% energy preservation

The identity model can now be generated from the albedo
images based on the standard PCA technique.

B. Building a Model for Directional Lighting Variations

Consider now all facial texture which exhibit directional
lighting variations from all 4 subsets. These texture are firstly
projected onto the previously built subspace of individual
variation, ULS. We note these texture vectors, containing some
directional lighting information, with g.

Note that g contains both identity and directional lighting
information. The same reference shape is used to obtain the
new texture vectors g, which ensures that the previous and new
texture vectors have all equal lengths. In Fig. 3(a) a random
selection of faces is shown.The projection of the texture
vectors g onto ULS gives the sets of optimal texture parameter
vectors as in:

b"opt‘ :QDT (g_;) (1)

ident ident

The back-projection stage returns the texture vector,
optimally synthesized by the identity model. The
projection/back-projection  process filters out all the
variations which could not be explained by the identity
model. Thus, for this case, all directional lighting variations
are filtered out by this process,
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Continuing with the procedure for the examples in Fig.
3(a), their filtered versions are shown in Fig. 3(b).

Fig. 3(a): A reference sample subset of images with
various directional lighting effects

By -
Fig. 3(b): Face samples from 3(a) with the contribution
of directional lighting removed by filtering (eq. 5)

The residual texture is further obtained as the difference
between the original texture and the synthesized texture which
retained only the identity information. This residual texture
normally retains the information other than identity.

— 7 opt |
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The residual images give the directional lighting

information - Fig. 4. These residuals are then modeled using
PCA in order to generate the directional lighting subspace.

C. Creating a Merged Face Model

As described above, three separate components of the
face model have been generated. These are: (i) the shape
model of the face, (ii) texture model encoding identity
information, and (iii) the texture model for directional lighting.
The resulting texture subspaces are also orthogonal due to the
approach described above. The fusion between the two texture
models can be realized by a weighted concatenation of
parameters:

w S b S
c= bident (4)

Wlight blight

where Wiighting and Ws are two vectors of weights used to
compensate for the differences in units between the two sets of

texture parameters, and for the differences in units between
shape and texture parameters, respectively.

Fig. 4: Images of Fig 3(b) subtracted from images of Fig
3(a) to yield a set of difference (residual) images.

D. Fitting the Lighting Enhanced Model

The conventional AAM algorithm uses a gradient estimate
built from training images and thus cannot be successfully
applied to images where there are significant variations in
illumination conditions. The solution proposed by Batur et al.
is based on using an adaptive gradient AAM [6]. The gradient
matrix is linearly adapted according to texture composition of
the target image. We further modify the approach of Batur [2]
to handle our combined ULS and DLS texture subspace. The
derivation and justification of this approach is quite complex
and so the interested reader is referred to [3], [4] for full details.

E.  Colour Space Enhancements

When a typical multi-channel image is represented in a
conventional color space such as RGB, there are correlations
between its channels. For natural images, the cross-correlation
coefficient between B and R channels is ~0.78, between R and
G channels is ~0.98, and for G and B channels is ~0.94 [24].
This inter-channel correlation explains why previous authors
[25] obtained poor results using RGB AAM models.

Ohta’s space [10] realizes a statistically optimal
minimization of the inter-channel correlations, i.e.
decorrelation of the color components, for natural images. The
conversion from RGB to I112I3 is given by the simple linear
transformations in (5a-c).

; _R+G+B
! 3 (5a)
R—B
L=~ (5b)
_2G-R-B (5¢)
[3—T

I1 represents the achromatic (intensity) component, while
12 and 13 are the chromatic components. By using Ohta's space
the AAM search algorithm becomes more robust to variations
in lighting levels and color distributions. We present a
summary of comparative results across different color spaces in
Tables I and II. The interested reader is referred to [38] and [3]
for a more detailed analysis and description of this work.
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TABLE 1
TEXTURE NORMALISATION RESULTS ON (PIE) SUBSET 2 (Unseen)
Maodel Success Pt-Crv Pt-Pt PCTE
%] (Mean/Stdy  (Mean/Std)  (Mean/Std)
Greyscale 88.46 3.93/2.00 6.91/5.45 -
RGB GN 80.77 3.751.77 7.09/4.99 7.20/2.25
CIELAB GN oo 2.70:/0.93 4.36/1.63 5.91/1.19
11213 SChN 100 2.60/0.93 4.20/1.45 5.87/1.20
RGB SChN 73.08 4.50/2.77 8.73/7.20 7.25/2.67
CIELAB SChN 88.46 3.51/291 6.70/8.29 6.28/2.09
[11213 GN 92.31 3.23/1.21 5.55/2.72 6.58/1.62
TABLE 11
CONVERGENCE RESULTS ON Unseen DATABASES
Model Success Pt-Crv PTE
Rate [%] (Mean/Std/Median)  (Mean/Std/Median)
dbl-Grayscale* 092.17 5.10 1.66 4.90 4.28 1.03 4.21
dbI-RGB-none 99.13 494 1.37 4382 1009 .58 9.93
dbl-RGB-G 98.26 4.98 1.44 4.65 7.49 1.98 7.02
dbl1-RGB-Ch 87.83 5.32 1.65 5.08 6.33 140 5.95
dbl1-111213-Ch 99.13 3.60 1.32 3.32 510 101 4.85
dbl-I1112-Ch 99.13 4.25 1.65 3.79 8.26 4.11 6.10
db2-Grayscale® 73,73 4.17 1.44 5.67 512 424 4.03
db2Z-RGB-none 5447 4.07 T.40 369 1243 343 1241
db2-RGB-G 94.17 374 145 323 9.04 1.83 8.97
db2-RGB-Ch 62.14 4.01 1.60 3.46 7.70 4.26 6.06
db2-111213-Ch 88.35 33 126 298 6.16 2.28 573
db2-1112-Ch 87.38 3.60 1.55 3.04 10,00 3.41 8.94
db3-Grayscale® 63.89 4.85 2.12 4.26 4.90 344 398
db3-RGB-none 12.22 444 1.79 399 1425 4.79 13.34
db3-RGB-G 65.28 4.55 2.03 4.0l 0.68 2.81 9.27
db3-RGB-Ch 59.72 502 2.04 426 7.16 491 574
db3-111213-Ch 86.81 353 149 315 6.04 256 5.20
db3-1112-Ch 86.81 390 1.66 341 6.60 1.94 6.30

F.  Uses of Statistical Models and AAM

In section V we will describe the use of an improved AAM
model for use in face recognition. However there are a
multitude of alternative applications for such models. These
models have been widely used for face tracking [7], and
measuring facial pose and orientation.

In other research we have demonstrated the use of AAM
models for detecting phenomena such as eye-blink [16],
analysis and characterization of mouth regions [17] and facial
expressions [18]. In such context these models are more
sophisticated than other pattern recognition methods which can
only determine if, for example, an eye is in an open or closed
state. Our models can determine other metrics such as the
degree to which an eye region is open or closed or the gaze
direction of the eye [16]. This opens the potential for
sophisticated game avatars or novel gaming Ul methods

G. Building a Combined Model

A notable applicability of the directional lighting sub-
model, generated from a grayscale training database, is that it
can be efficiently incorporated into a color face model. This
process is illustrated in Fig. 5. The left-hand process diagram
illustrates the partitioning of the model texture space into
orthogonal ULS and DLS subspaces. The right-hand side
process diagram shows how the DLS subspace can be used to
train a color ULS, implemented in the Otha color space. This
yields a full color ULS which retains the orthogonality with the
DLS and when combined with it yields an enhanced AAM
model incorporating shape + DLS + color ULS subspaces. The
color ULS has the same improved fitting characteristics as the

color model [38] and so this combined model exhibits both
improved registration and robustness to directional lighting.
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Fig 5: Process steps to build a color extension of the combined DLS +
ULS model for face recognition.

H. Model Application to Face Recognition

1) Benchmarking for AAM-based Face Recognition.

The recognition tests which follow have been performed by
considering the large gallery test performance, as proposed in
[19]. As a benchmark with other methods we decided to
compare relative performance with respect to the well-known
eigenfaces method [20]. Detailed results of these tests are
reported in [3]. There is a reported modest improvement of
5%-8% to be achieved in using a color AAM method (RGB)
over a grayscale AAM. The performance of the color AAM is
approximately equal to that of both grayscale and color
eigenfaces methods.

2) Tests on the Improved AAM Model.

Again a more detailed report of these tests is given in [3].
We note that none of the color AAM techniques based on RGB
color space can compete with the conventional eigenface
method of face recognition. Conversely, all of the 11213 based
models perform at least as well as the eigenface method, even
when the model has been trained on a different database. When
trained on the same database we conclude that the 111213 SChN
model outperforms the eigenface method by at least 10% when
the first 50 components are used. If we restrict our model to the
first 5 or 10 components then the differential is about 20% in
favor of the improved AAM model.

IV. MobeL ENHANCEMENTS — DIFFERENTIAL AAM FrROM REAL-
TmME STEREO CHANNELS

A. Hardware Architecture of Stereo Imaging System

The general architecture of the system is shown in Fig 6
below. The two CMOS sensors are connected to an FPGA
which incorporates a PowerPC core and associated SDRAM.
Additional system components have been added to implement
a dual stereo image processing pipeline [37].
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CMOS Sensor 1

CMOS Sensor 2

Xilinx Virtex4 FPGA

PowerPC

VGA Monitor DDR SDRAM

!

Fig. 6: General architecture

The development board is a Xilinx ML405 development
board, with a Virtex 4 FPGA, a 64 MB DDR SDRAM
memory, and a PowerPC RISC processor. The clock frequency
of the system is 100 MHz. The internal architecture of the
system is shown in Fig. 7. The sensor used is a 1/3 inch SXGA
CMOS sensor made by Micron. It has an active zone of
1280x1024 pixels. It is programmable through the I12C
interface. It works at 13.9 fps and the clock frequency is 25
MHz. This sensor was selected because of its small size, low
cost and the specifications of these sensors are satisfactory for
this project. The interested reader is referred to [37] for
additional details and a more detailed review of stereo imaging.

[ Conversion Block 1/~ Camera Unit 1

‘ \
Conversion Block 2 ) Camera Unit 2 " DDR

SDRAM
VGA |
Controller PLB
12C Controller DCR

PowerPC

ML405

Fig. 7: Internal architecture

This system enables real-time stereo video capture with a
fixed distance between the two imaging sensors.

- — —

Fig. 8: Stereo face iage pair example

B.  Determination of a Depth Map

When using two sensors for stereo imaging, the problem of
parallax effect appears. Parallax is an apparent displacement or
difference of orientation of an object viewed along two
different lines of sight, and is measured by the angle or semi-
angle of inclination between those two lines.

The advantage of the parallax effect is that with the help of
this, depth maps can be computed. The algorithm requires pairs
of rectified images, [12] which means that corresponding
epipolar lines are horizontal and on the same height. The
search of corresponding pictures takes place in horizontal
direction only. For every pixel in the left image the goal is to
find the corresponding pixel in the right image.

Viewpoint1

Viewpoint2

ne

Viewpoint1

Fig 9: The Parallax Effect

A
Viewpoint2

It is practically impossible to find corresponding single
pixels, thus we have used windows of different sizes (3x3; 5x5;
7x7). The size of window is computed based on the value of
the local variation of each pixel. [13] The formula for the
computation of the local variation is that one proposed in [13]
and is shown below:

LV<p>=§;II(i,j)—u| (©6)

where u is the average grayscale value of image window,
and N is the selected square window size.

The first local variation calculation is made over a 3x3
window. After this, the points with a value under a certain
threshold are marked for further processing. The same
operation is done for 5x5 and 7x7 windows as well. The sizes
of the windows is stored for use in the depth map computation.
The operation to compute the depth map is the Sum of
Absolute Differences for RGB images (SAD). The value of
SAD is computed for up to a maximum value of d on the x
line. After all the SAD values have been computed, the
minimum value of SAD(x,y,d) is chosen, and the value of d
from this minimum will be the value of the pixel in the depth
map. [12] At searching the minimum, there are some problems
that we should be aware of. If the minimum is not unique, or its
position is d min  OF d max » the value is discarded. Instead of
just seeking the minimum, it is helpful to track the three
smallest SAD values as well. The minimum defines a threshold
above which the third smallest value must lie. Otherwise, the
value is discarded.

Fig. 10: Depth map result for the stereo image pair in Fig. 8

One of conditions for our depth map computation algorithm
to work properly is that the stereo image pairs should contain
strong contrast between the colors within the image and there
should not be large areas of nearly uniform color. Other
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researchers who attempted the implementation of this
algorithm used computer generated stereo image pairs, which
contained multiple colors [13], [26]. In our case, the results
after applying the algorithm for faces were sub-optimal
because the color of facial skin is uniform across most of the
face region and the algorithm was not able to find exactly
similar pixels in the stereo image pair.

C. AAM Enhanced Shape Model

In the earlier discussion of section III we presented a face
model with two, orthogonal texture spaces. In this section we
will present the development of a dual orthogonal shape
subspace which is derived from the difference and averaged
values of the landmark points derived from the right-hand and
left hand stereo face images. This separation provides us with
an improved 2D registration estimate from the averaged
landmark point locations and an orthogonal subspace derived
from the different values.

This second subspace enables an improved determination
of the SAD values and the estimation of an enhanced 3D
surface view over the face region.

| R Y -

)

ol
Fig. 11: Fitted AAM face m

)

odel on the stereo pair in Fig. 9

:

An example of fitting the model on a stereo image pair is
given in Fig. 11, showing the identified positions of the
considered landmarks. The corresponding triangulated shapes
are then shown in Fig. /2. The landmarks are used as control
points for generating the 3D shape, based of their relative 2D
displacement in the two images. The result is shown in Fig. 13.

O ———— o

50t 3 L e 50k

tof N — 7SS s

0 W 0 1 200 0 R R

Fig. 12: Corresponding triangulated meshes for fitted model in Fig. 12

The 3D shape model allows for 3D constraints to be
imposed, making the face model more robust to pose
variations; it also reduces the possibility of generating
unnatural shape instances during the fitting process,
subsequently reducing the risk of an erroneous convergence.
Efficient fitting algorithms for the new, so called 2D+3D,
model have already been developed [27], [28], [29].

Full 3D face models, called 3D morphable models
(3DMM), have also been proposed [31]. Yet, these models

have a high complexity and significant computational
requirements thus we prefer the approaches based on the
simpler AAM techniques. By incorporating the enhancements
outlined in section III we feel they offer a more useful
approach for implementation in embedded systems.

10

oo

150 200 = 200

Fig. 13: 3D shape from 2D stereo data with triangulation-based warping

V.  MobkiL APPLICATION — 3D GAMING AVATARS

In previous sections we employed a triangulation-based,
piecewise affine method for generating and fitting our
statistical face models; it is commonly preferred due to its
reduced computational costs. Above we used the Delauney
triangulation for partitioning the convex hull of our control
points. The points inside triangles are mapped via an affine
transformation which uniquely assigns the corners of a triangle
to their new positions.

A different warping method, that yields a denser 3D
representation, is based on thin plate splines (TPS), which have
been originally introduced in [33]. For a more detailed
discussion on the use of TPS for improving the convergence
accuracy of color AAMs refer to [32]. The possibility of using
TPS-based warping for estimating 3D face profiles has been
shown in [3], [32].

In the context of generating realistic 3D avatars, the choice
of TPS-based warping technique offers a more suitable
solution. This technique is more complex that the piecewise
linear warping employed above; yet, note that important
progress has been made to simplify and reduce its initial
computational complexity. A more detailed discussion on this
aspect can be found in [3]. We summarize next the main steps
for generating the TPS-based warping. TPS-based warping
represents a nonrigid registration method, built upon an
analogy with a theory in mechanics. Namely, the analogy is
made with minimizing the bending energy of a thin metal plate
on which pressure is exerted using some point constraints. The
bending energy is then given by a quadratic form; the spline is
represented as a linear combination (superposition) of
eigenvectors of the bending energy matrix:

P
fle,y) =ax +rrm-rf+ayy+z wU(||(zi,55)— (@ 0)]).  (7)
i=1
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where U(r) = r* log(r); (xi, yi) are the initial control points. a
= (a; a, ay) defines the affine part, while w defines the
nonlinear part of the deformation. The total bending energy is
expressed as

- PN (PN (e
If_.[/gz ((012) Tz(zm)y) *(W) dady,  (8)

The surface is deformed such that to have minimum
bending energy. The conditions that need to be met so that (7)
is valid, i.e., so that f (x, y) has second-order derivatives, are
given by

v
Z wy; =0 9)

i=1
and

i P
Z wim; = 0; Z w;y; = 0. (10)
i=1 i=1
Adding to this the interpolation conditions f (xi, yi) = vi, (7)
can now be written as the linear system in (10):

ERSIMEIME (an

where K = U(J|(xi, ¥i) — (Xj , ¥j)I]), O is a 3 X 3 matrix of
zeros, o is a 3 x 1 vector of zeros, P;j = (1, x;, yi); w and v are
the column vectors formed by w; and v;, respectively, while a =
[a; ac a,]T.

100

150

200 200

Fig. 14: Estimated 3D profile from 2D stereo data using Thin
Plate Spline —based warping

The main drawback of using the thin plate splines was their
high computational load. The solution requires the inversion of
a p x p matrix (the bending energy matrix) which has a
computational complexity of O(N°), where p is the number of
points in the dataset (i.e., the number of pixels in the image);
furthermore, the evaluation process is O(N?). Since their
introduction though, important progress has been made in order
to speed this process up. An approximation approach was
proved in [34] to be very efficient in dealing with the first
problem, reducing greatly the computational burden. As far as
the evaluation process is concerned, the multilevel fast

multipole method (MLFMM) framework was described in [35]
for the evaluation of two-dimensional polyharmonic splines,
while in [36] this work was extended for the specific case of
TPS, showing that a reduction of the computational complexity
from ON?) to O(N logN) is indeed possible. Thus the
computational difficulties involving the use of TPS have been
greatly reduced.

Based on this warping technique we are able to generate
3D facial profiles as shown in Fig. 14.

VI.  CoNCLUSIONS

We have presented methods to build improved AAM facial
models which condense significant information about facial
regions within a relatively small data model. Methods have
been described which allow models to be constructed with
orthogonal texture and shape subspaces. These allow
compensation for directional lighting effects and improved
model registration using color information.

These improved models may then be applied to stereo
image pairs to deduce 3D facial depth data. This enables the
extension of the AAM to provide a 3D face model. Here we
presented preliminary results of two approaches — one based on
2D + 3D AAM and a second approach based on thin plate
spline warpings. Our results are encouraging, particularly those
based on thin plate splines which are shown to produce an
acceptable 3D rendering of the face data.

Our results, although still preliminary, suggest that these
extended AAM based techniques when combined with
stereoscopic image data offer potential for improved user
interface methods and the generation of dynamic real-time
avatars for computer gaming applications.
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