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Facial Expression Modeling using Component
AAM Models — Gaming Applications

Ioana Bacivarov

College of Engineering & Informatics,
National University of Ireland Galway
Galway, Ireland
ioanabacivarov@yahoo.com

Abstract—In this paper we provide preliminary results on a new
modeling approach for improved determination of facial
expressions from a low-resolution video stream. An initial proof-
of-concept using an extension of an Active Appearance Model
(AAM) to measure facial parameters and a set of classifiers to
determine facial states are described. We also discuss the
potential for applying this technique to determine the emotional
state of the players of a computer game and suggest how this
information can be integrated into the workflow of a game. In
addition we describe a number of use cases where the game
environment can be adapted based on feedback from the players.

Keywords- interactive gaming, affective imaging, expression
classification and recognition, AAM, SVM

L IntrRODUCTION (HEADING 1)

Computer gaming has grown from its humble origins to
become a global industry rivaling the movie industry in terms
of scale and economic impact. The technology of gaming
continues to improve and evolve at a very rapid pace both in
terms of control interface and the graphical display of the
gaming world. Today's user interfaces feature more
sophisticated techniques for players to interact and play co-
operatively with one another. It is possible to have real-time
video and audio links between the real players so they can co-
ordinate their group gameplay. .

However the emphasis remains on the player being drawn
into the artificial game world of the computer. There is still
little scope for the gaming environment to reach back to the the
players, sensing and empathizing with their moods and
feelings. Given the sophistication of modern Al game engines
we feel this is a missed opportunity and that gaming engines
will soon need to evolve to develop and provide methods to
empathize with individual game players.

In this paper we present one practical approach to providing
a direct connection back to the game player. We describe an
approach to modeling and classifying the facial expressions of
a game player using a low-resolution webcam and state-of-art
face detection and face modeling techniques. Our system in
unoptimized form, is capable of running in real-time on a
standard desktop PC. With further refinement it could be
implemented on a dedicated embedded device, or converted to
a dedicated hardware subsystem. However, in this paper we are
primarily concerned with presenting a working proof-of-
concept.
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This paper is organized as follows. An overview of our
system is given in section II; section III describes how facial
features can be extracted using AAM models; the section IV
and V respectively describe improved eye and lips models;
section VI describe the full component model for a face region
and section VII explains how we optimized the relevant
features which are extracted using this model. In Section VIII
we explain our approach to train classifiers and how these are
used to determine facial expressions. In section IX a range of
representative results are presented showing the discriminative
abilities of our system between different facial expressions.
Finally in section X we discuss some applications of our
system in computer gaming, draw some conclusions and
present proposals for future work.

II.  SySTEM ARCHITECTURE

A system that performs automatic face recognition or
expression recognition typically is comprised of three main
subsystems, as shown in Figure I: (i) a face detection module,
(i) a feature extraction module, and (iii) a classification
module which determines a similarity between the set of
extracted features and a library of reference feature sets. Other
filters or data preprocessing modules can be used between
these main modules to improve the detection, feature extraction
or classification results..
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Figure 1: Generic Facial Analysis/Classification System

In the first module, it is decided whether the input picture
or the input video sequence contains one or more faces. If so,
then facial features are extracted from the detected faces, in our
case by applying an advanced face model which encodes the
facial features by a set of parameters. As a third step, the facial
features — determined as a set of output parameters from the



model - are classified in order to perform facial recognition or
expression classification..

A. Face Detection Module

In our system, we employ a face detector module as
initialization for the AAM search. Face detection can be
defined as the ability to detect and localize faces within an
image or a scene. In the last few years, many different face
detection techniques have been proposed in literature. A
comprehensive survey of the face detection methods is
presented in [1]. State-of-the-art face detection methods
provide real-time solutions that report high detection rates.

In this field the most significant advances in the last decade
are due to the work of Paul Viola and David Jones who
proposed a face detector based on rectangular Haar classifiers
and the integral image representation of an input image [2].
This detector is the fastest face detector reported in the
literature so far. It is able to perform for semi-frontal faces in
real-time and is highly accurate. The Viola-Jones face detector
is presently the gold standard against which other face
detection techniques are benchmarked. In our system, we
employ the Viola-Jones face detector, as initialization for the
AAM search. An example of face detection using the Viola and
Jones algorithm is shown in Figure 2. This algorithm has been
implemented in OpenCV [3], [4] which is a free computer
vision library used widely by the computer vision research
community. Figure2: Examples of detected faces using the
Viola-Jones algorithm.

B. Feature Extraction Module

In our work, we extend the AAM approach for facial
feature extraction. Although AAM is a powerful tool for image
interpretation, the conventional algorithm is unreliable when
dealing with generalized facial expressions. It is a global face
model whereas the key features which determine facial
expressions are local features. It is these local features which
are responsible for most of the relevant facial variation.

Component-based AAM [5] offers a practical solution to
these drawbacks. It combines a global face model with a series
of sub-models. These sub-models are typically component
parts of the object to be modeled. This approach benefits from
both the generality of a global AAM model and the local
optimizations provided by its sub-models. We adjust the model
through training to be robust to small to medium pose

variations and to directional illumination changes. We then
demonstrate the benefits of our system, with respect to
expression classification and recognition, taking into account
the real-time requirements of such a system.

C. Expression Classification Module

In our work, two classifiers are compared: Nearest
Neighbor (NN) and Support Vector Machine (SVM). The
choice of the two classifiers is based on their positive results
obtained in the literature. In [6] it is stated and it is proved by
experiments for gender classification and face recognition that
SVM is typically among the top two classifiers, and the other
top ranking classifier is one of the Euclidean-NN rule or the
cosine-NN rule [7]. As we designed them, in this work these
classifiers use the relevant AAM parameters to choose between
facial expressions.

III.  Tue ExtracTiON OF FACIAL FEATURES USING AAM

A.  Statistical models of appearance (AAM)

AAM was proposed by Cootes et al. [8] in 1998 as a
deformable model, capable of interpreting and synthesizing
new images of the object of interest. The desired shape to be
modeled — in our case a facial region - is annotated by a
number of landmark points. A shape vector is given by the
concatenated coordinates of all landmark points and may be
formally written as, s=(x/,x2,....xL,yl,y2,....,yL)", where L is
the number of landmark points.

The shape model is obtained by applying Principal
Component Analysis (PCA) on the set of aligned shapes:

1 <
s=S4p.b,, 5=o-3s, M

s i=1
where S is the mean shape vector, and Ny is the number of
shape observations; s is the matrix having the eigenvectors

as its columns; b, defines the set of parameters of the shape
model.

The texture, defined as the pixel values across the object of
interest, is also statistically modeled. Face patches are first
warped into the mean shape based on a triangulation algorithm.
Then a texture vector t=(t1,£2,...,tp)" is built for each training
image by sampling the values across the shape normalized
patches. The texture model is also derived by means of PCA on
the texture vectors:

- 1 N,
=1+p,b, ;=NZ t, 2)
i=1

where 7 is the mean texture vector, with N, as the number of
texture observations; #; is the matrix of eigenvectors, and b,
the texture parameters.

_| Wb
c= bt are

The sets of shape and texture parameters

used to describe the overall appearance variability of the
modeled object, where W, is a vector of weights used to
compensate the differences in units between shape and texture
parameters.
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After a statistical model of appearance is created, an AAM
algorithm is employed to fit the statistical model to a new
image. This determines the best match of the model to the
image allowing us to find the parameters of the model which
generate a synthetic image as close as possible to the target
image.

B.  Relevant AAM Parameters for illustrating emotions

AAM extracts two types of features: geometric features
describe shapes, deformations and locations of facial
components, and poses variations; appearance features
describe skin texture changes, e.g., furrows and bulges,
blushing, expression wrinkles, illumination variations. .

Geometric features are more affected when expressing
emotions. As examples, when surprised, eyes and mouth open
widely, the latter resulting in an elongated chin; when sad, we
often blink; when angry, eyebrows tend to be drawn together.
Both types of features are important for fitting the AAM model
to unseen pictures. The right choice of parameters is important
for optimal determination of expression. A more detailed
discussion is given in section VII.

C. Relevant facial features to indicate expressivity

Facial expressions are defined by the dynamics of the
individual facial features. Psychophysical experiments [9]
indicate that the eyes and the mouth are the most relevant facial
features in terms of facial expressions. Experiments show that,
in some cases, one individual facial region can entirely
represent an expression. In other cases, the interaction of more
than one facial area is needed to clarify the expression.

A thorough description of the eye area is provided using an
AAM model, as described in our previous work [10]. A
detailed AAM lip model, including a hue filtering is proposed
by us for the lips area in [11]. Each of these independent
models is used now for expression recognition.

Our work shows that on average, the scores obtained for the
eyes shape represent 70% of the information contained by the
entire face shape and the mouth is also an important emotion
feature carrier for certain emotions, e.g., surprise, with around
60% independent contribution. Further, when combined and
processed together emotion decoding accuracies increase.
Results of expression recognition for eyes, lips, and faces are
summarized in Tables II-IIT of Section VI-B.

D. Component-based AAM representation of expressivity

Component-based AAM [5] is an approach that benefits
from both the generality of a global AAM model and the local
optimizations provided by its sub-models. In addition to our
global model, we use component models of the mouth and two
eye-models.

In summary, the component-based algorithm is as follows.
Two sub-models are built, one for the eye region and one for
the lips. The eye sub-model is then derived in a left and,
respectively, a right eye model. At each iteration, the sub-
models are inferred from the global model. Their optimums are
detected by an AAM fitting procedure. Then the fitted sub-
models are projected back into the global model.

IV. ImproveDp CoMPONENT EYE MODELS

A. Extension of the AAM eye model

The initial eye model developed in chapter 5 is based on the
standard formulation of AAM [8]. The model offers a detailed
analysis of the eye region in terms of degree of eyelid opening,
position of the iris, and shape and texture of the eye. The model
is designed to be robust to small pose variation. Blink and gaze
actions were also modeled in [10], [12].

However, when we tested the model on general conditions
not included in the training set, it failed in 60% of cases, cf.
section 5.1.4 of [12]. Its challenges include unseen head pose,
occlusions of one or more components of the eye model, or
difference in expression between the two eyes such as
“winking” where one eye is open, the other closed. This is
explained by the limitations of a standard AAM. Although
AAMs are powerful tools for image interpretation, they present
several limitations when used as global appearance models.
This formulation, despite all its advantages has the limitation of
constraining the model to the variations learned during the
training phase. As we created a global model for the two eyes
together, we subsequently realized that this constraint does not
allow the two eyes to deform independently.

A visual explanation is provided by Figure.3 which
presents two types of challenges: in-plane-head-rotation and
independent actions of the eyes, i.e., winking. In the training
set we included pictures with the two eyes open or closed.
However, as we modeled both eyes together, the model cannot
adapt to situations such as one eye open, while the other is
closed.

Figure 3:. Example of poor fitting for winking in-plane-rotated eyes.

The component-based AAM, as described in [13] and [14],
offers a solution to this particular drawback of AAM, i.e.,
constraining the model components to global variations. These
authors propose a face model that combines a global model
with a series of sub-models. This approach benefits from both
the generality of a global AAM and the local optimizations
provided by its sub-models. We now adapt this approach to
independently model the eye regions within a face. In the
following sections, we propose two versions of the component-
based AAM adapted for the eye region. We test both versions
and then determine the best of these approaches for our
application of facial expression recognition. This will then be
used in our improved component model described in section
VL

B. Component-based AAM formulations

In a first stage, we adapted the component-based AAM for
the eye-region using two different approaches. For the first
approach the open-eye and closed-eye states are modeled
separately; for the second approach we model each eye
separately, retaining the mixed (overlapping points)
open/closed information for each eye region. Using these two



distinct approaches we also hope to learn more about how
AAM models behave under different training constraints.

1) Separation of open and closed eye states

In our first approach, we separately modeled the two-eye
appearance for open or closed eyes. We started from the
hypothesis that mixing open and closed eye shapes or textures
can introduce errors into the model. The procedure is as
follows. We firstly create a global model using both eyes, open
and then with both eyes closed. The model is refined with two
sub-models modeling only some particular features of both
eyes, meticulously annotated as shown in Figure 4. A first sub-
model represents components of open eyes, i.e. inner eyelid
and iris. A second sub-model represents components of closed
eyes, i.e., inner eyelid and outer eyelid.

In the case of closed eyes, the inner eyelid is not composed
by overlapped points, but represented as a straight line. The
eyebrows are included only in the global model for better eye
location. They are considered superfluous for local modeling
stages, as the eyebrows are mostly necessary for accurate eye
location. In these stages, the eye location is believed accurate,
coming from the initial global stage.

Figure 4: Annotation for the global AAM and for the two sub-models: for
open and closed eyes.

The fitting process is represented in Figure 5. We firstly
match the global AAM which gives us a rough eye modeling.
Then, a blink detector is applied, determining if the eyes are
open or closed; the blink detector is described in [10] and [12].
Next, the corresponding sub-model is applied, the closed-eyes
sub-model if the detector indicats a blink, otherwise the open-
eyes model. This local sub-model provides a more accurate
match to the eye-region.

Only one of the open or closed sub-models is used in this
fitting process, saving computational time. Another advantage
is the accuracy of the shape annotation, as closed-eye shape is
no longer obtained from open-eye shape. In consequence,
fewer errors are introduced in the appearance model. The
blinking information is still extracted thanks to the global
model, but the accuracy of the shape is refined by the relevant
sub-model.

2) Independent modeling of the left and the right eyes
The idea of our second approach started from our idea to
model each eye independently. A two-eye global model is
necessary for an accurate location and initial modeling.
Moreover we would like to be able to better optimize the
matching of the two eyes independently.

A global model is created using both eyes open and closed.
Then a separate sub-model is created describing a single open
or closed eye and the different variations in between the two
states. The two models, i.e., one global model and one sub-
model, are trained and are independently generated using the

same procedures, as described in section III. The interested
reader is also referred to [12] for a more detailed description.

—————— -+ Global AAM
link
Open eyes Closed eyes
sub-maodel sub-model
Aam] | Aam

| Fit the open-eyes sub-
m

‘ | Fit the closed-eyes sub- ‘
| L |

New global AAM ‘

Figure 5: The fitting algorithm for the open/ closed eyes sub-models.

One valuable aspect of the eye-model is the symmetry
between the two eyes. This characteristic permits, starting from
one eye model, e.g. left eye, to auto-generate an equivalent
model for the other eye, e.g., right eye, respectively, simply by
mirroring the data. An additional advantage is that we have less
memory space requirements, as only one set of eye-model
characteristics needs to be stored. This can be very important
when considering the implementation of such techniques in
low-cost consumer electronic devices such as gaming
peripherals.

Figure 6: Examples of annotation for the global model, for the local sub-
model and its mirroring in order to obtain the right eye.

The advantage of this modeling approach is that it permits
that the two eyes find their optimal position and shape
independently. There are situations, especially when dealing
with large pose variations, plane rotations, occlusions, or
strong facial expressions, when the 2-D projection of the eyes
loses the property of global symmetry. An example of such a
situation was presented in Figure [ above where we
exemplified poor fitting of the global AAM.

In Figure 6 we describe the fitting algorithm adapted for
this component-based version. Initially the global AAM is
fitted, roughly locating the two eyes. The points of the global
model which correspond to the sub-models are firstly extracted
to form the two shape vectors, providing a good initialization
for each sub-model. At each iteration, the sub-model is then
inferred from the global model, its optimum is detected by an
AAM fitting procedure, and the fitted sub-model is projected
back into the global model providing a refined initialization for



that model. Another projection of the global shape vector onto
its principal components space is required. This step is
necessary in order to constrain the two independently obtained
eyes such that they remain within the limits specified by the
global model. In the last step of the fitting process, the fitting
error for this refined global model is compared with the
original global model fitting error and a decision is taken to use
the global model with the least error. This process can be
repeated until a convergence criteria for the global and local
errors is achieved for each of the models within the component
AAM framework. However a single step process will generally
achieve sufficient convergence if a Viola-Jones face detector
has been used to provide the first initialization for the global
model. A detailed process flowchart is provided in Figure 8
below and the interested reader can find a more detailed
description in [12].

In Figure 7 we present some comparative examples of
fitting: the first column shows the effects of fitting the
standard, holistic AAM eye model; the second column shows
the effect of fitting the independent-eyes sub-models without
applying constraints from the global model; finally the third
column shows the results using the independent-eyes models
combined with constraints from the holistic model.

\

Figure 7: Fitting the standard AAM model; b. fitting the left/right eye
sub-models without refitting the global model; c. fitting the left/right eye
sub-models and refitting the global model.

C. Comparison of proposed component-AAM approaches

We proposed two different versions of adapting the
component-based AAM for the eye region. The first version
locally models both eyes, separating the open and closed eye
situations. The second version independently models each eye,
but it simultaneously includes open and closed eyes. We tested
both versions, with a view to using the more effective model in
a range of applications. Both versions were trained using the
same training set as for the standard eye model developed in
[10] and [12]. A dataset of 70 pictures were carefully selected
to provide a high degree of variability in terms of subject
individuality, pose, illumination, and facial features. Samples
of the training set can be seen in Figure 7 and thumbnails of
the entire dataset are available as an appendix in [12].

In order to compare these two modeling approaches, we
used the same test set as the set used for testing the standard
AAM eye model. A detailed description of testing the

component-based AAM compared with the standard AAM
formulation is given in chapter 7 of [12].
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Figure 8: Fitting algorithm for component based AAM eye model.

D. Conclusions & findings for the component eye-model

For now, we conclude that the version of the component-
based AAM which uses independent left and right eye-models
proved more useful and effective across a range of
applications. In this version, we use as local sub-models single-
eye models, adapted for open and closed eyes. This approach
proved capable of accurately determining the eye parameters,
particularly in cases of facial expression, where the two eyes
deform independently. It is especially robust to pose variations
and to in-plane rotations.

The first version that we proposed, besides providing a
poorer fitting in most cases, has the additional drawback that it
is critically dependent on the accuracy of blink detection. This
drawback is explained in Figure 9. In the first picture the blink
detector fails by indicating open eyes. This causes a
catastrophic failure of the algorithm, as the open eye sub-model
is chosen for fitting. Not only does it attempt to match the
closed eyes with the open-eye model but the global alignment
of the eye-region is completely lost.

In the second case where independent eye-models are used
in the component-based AAM, each eye is fitted
independently. Thus even if the global model fails by matching
open eyes, the sub-models still correctly match the eye image



with closed eyes because each local model contains both open
and closed-eye training data. This situation is represented in the
second picture of Figure 9.

Figure 9: Comparison of the two proposed component-based versions:
the two-eyes sub-model vs. the single-eye sub-model.

The second version that we proposed, the component-based
eye AAM independently modeling the left and right eye, is the
one employed in our work on expression recognition described
in the remainder of this paper.

E. A direct quantitative comparison of Modeling techiques

After visually inspecting the results, a quantitative
evaluation of the proposed model is performed on
representative examples of the three test sets. The quantitative
evaluation of a model performance is realised in terms of
boundary errors, calculated as Point-to-Point (Pt-Pt) shape
error, calculated as the Euclidean distance between the ground-
truth shape vector and the converged shape vector inside the
image frame:

Pe-Pi=L 3t 2 O
H;:;

where the index g marks the ground truth data, obtained in
our case by hand annotation.

Another type of error can be calculated, namely the Point-
to-Curve shape error. It is calculated as the Euclidian norm of
the vector of distances from each landmark point of the exact
shape to the closest point on the associated border of the
optimized model shape in the image frame :

Pr—Crv =" min(ts,rt ) + 0, ri@) ) - @
Bi=r )

The mean and standard deviation of Pt-Pt and Pt-Crv are
used to evaluate the boundary errors over a whole set of
images. In Figure 10 we present the histogram of Pt-Pt shape
errors calculated with respect to manual ground-truth
annotations. The ground-truth annotations represent hand-
annotated shapes. In these tests we compare the standard AAM
formulation, the component-based method, when omitting its
last stage, i.e., the global fitting, and the component-based
AAM with global fitting. The initialization provided from the
face detection step is used as benchmark.

From the figure it can be observed that the boundary errors
for the tested fitting algorithms are concentrated within lower
values as compared to the initial point generated from the
detection algorithm, showing the methods improvement for eye
location. Furthermore, it can be noticed that the shape
boundary errors are concentrated within lowest values,
indicating that the full component-based AAM performs the
best in terms of fitting accuracy, thus resulting in a clear
improvement over the initial position, as well as over the other
fitting algorithms. More results for the component-based AAM
can be found in chapter 5 of [12]. The advantages of using a
component-based initialization and fitting is mirrored in the

higher accuracies obtained for eye tracking, blink, or gaze
detection.
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Figure 10: The histogram of the boundary error for the three algorithms:
conventional AAM, sub-model fitting and the component-based AAM.

V.  IMPROVED LIPS MODEL

In [11] and [12] we developed a lips model, based on the
standard AAM formulation. It was however observed that the
model failed our tests on unseen images in a proportion of
80%. We concluded that the main cause for this failure is a
poor initialization of the model. This is mainly due to the weak
contrast between the color of the lips and the surrounding skin.
We note that there is significant overlap in color ranges
between the lips and skin regions of the face [15]. In this
section, we propose an improved version of our AAM lips
model. We improve the standard AAM formulation by
applying a pre-processing step that offers a more accurate
initialization of the lip region. The overall approach, embracing
the initialization and the AAM modeling, is described in the
remainder of this section. We have tested the performance of
our lip model, by developing two consumer applications: a lip
tracker and a smile detector. More thorough experimental
testing of this model is documented in chapter 7 of [12].

A. initializaiton of the lip region by chrominance analysis

The lips model requires a strong initialization in order to
achieve an accurate fitting to unseen images. Consequently we
propose a pre-processing method that can provide such a robust
initialization. The most valuable information related to lips is
their red color, although red varies with respect to individuals,
make-up, illumination etc. Therefore, by filtering the red lip
color from the face region, we should be better able to identify
the global shape of the lip region.  This approach is based on
the work of Pantic et al [16]-[18], and is adapted for our AAM
models. Firstly, the input image is transformed into the HSV
colour space, as hue representation is less affected by
variations in illumination [16], [17]. This colour space brings
invariance to shadows, shading, and highlights and it permits
using only the hue component for segmentation. Then the
object of interest is filtered into the red domain, by applying
the following hue filter [19]:
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where /4 is the shifted hue value of each pixel so that /=
1/3 " for red color. Note that /, controls the positioning of the
filter in the Aue color plane and w controls the color range of
the filter around its %, value. As the color for the lip region
varies with respect to person identity, light conditions, make-up
etc., the challenge is to find optimal parameters for the filter.
Although an optimal solution would be an adaptive hue filter as
in [19], the simplified solution adopted in our case is to find the
optimal parameters for predefined conditions, e.g., for a
specific database.

A statistical analysis was performed on our training
set to study the variation of lip colour between individuals and
the differences caused by varying illumination on lip pixels for
the each picture was investigated. We noted that standard
deviation does not vary much from picture to picture, as the
pictures belong to the same database, with controlled
acquisition conditions. The filter coefficients are chosen after
performing an average on the mean and on the standard
deviation for all pictures. The overall mean is 0.01 and it
corresponds to the positioning of the filter 4. The overall
standard deviation approximating the filter width w is 0.007.

In our use of these techniques, after determining the
parameters of the filter and performing the actual filtering
operation, each image is binarized, as shown in Figure 11,
using a predefined threshold. The value of this threshold was
set to 0.5, determined after a trial-and-error testing.
Morphological operations such as closing, followed by
opening, can be used in order to fill in gaps and to eliminate
pixels that do not belong to the lip region. After the lip region
is determined, its center of gravity (COG) is calculated. This
point is then used as the initialization point for the AAM fitting
algorithm.

Figure 11: Lip region pre-processing: a. original image, b. after the hue
filter, c. after the binarisation.

B.  The final formulation of the AAM lip model

Our lips modeling is composed of two main steps: an
initialization step and a modeling step. Firstly, before the lip
feature can be extracted and analysed, a face must be detected
in an image and its features must be traced. The face is inferred
from the Viola-Jones face detector applied on the input image.
Then, our region of interest (ROI), i.e. the lip region, is
deducted from the rectangle describing the surroundings of the
face. Thus the ROI is reduced to the lower third on the y axis,
while 3/5 of the face box is retained on the x axis, as shown in
Figure 12. A hue filter is then used to provide an initial
location of the lip region within this ROI.
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Figure 12: Lip modeling system overview

In a second step, AAM is applied in order to perform
a refined detection and to determine detailed lips features. The
starting point for the algorithm is the COG of the hue filtered
ROIL. The AAM adjusts the parameters so that a synthetic
example is generated, which matches the image as closely as
possible, as seen in Figure 12. Optimal texture and shape
parameters are determined using the standard AAM lip model.
In consequence information regarding lip features, such as its
curvature, degree of opening, or its texture, can be readily
determined.

VI. Tue FuLL CompoNeENT-AAM Face MobeL

The low expression classification/recognition rates obtained
in the previous experiments, when a conventional holistic
AAM face model is used, serve to confirm the limitations of
this approach. This poor performance of the conventional
AAM when used for expression analysis can be understood
because this model is based on a global approach and is thus
more sensitive to changes in configuration than to changes in
local features. Such a representation cannot be sufficiently
flexible to permit adaptation to wider ranges of facial
variability, such as the deformations which are present in the
majority of distinctive facial expressions.

From a practical perspective we note that it is not possible
to include all possible variations of shape and texture in the
training set. The overall degrees of freedom inherent in the
model are restricted by the number of model parameters. Or to
put this another way, a model which did incorporate practically
all possible facial variations in its training set would have a
correspondingly large set of model parameters making it
unwieldy and impractical, particularly for applications in
consumer electronics or for implementations in low-cost
gaming peripherals. Thus any practical model we construct
must necessarily restrict its potential variations. To achieve real
improvements in our classification it would seem that we need
more than a single holistic AAM model.

In this section, we propose to adapt the component-based
AAM [5] for facial expression analysis. This approach benefits
from both the generality of a global AAM and the



optimizations provided by local sub-models. It adds degrees of
freedom to the global model, by accounting for individual
variations of facial features. The principles of component-
AAM were previously explained in detail in section IV, for the
eye features of a face. For a more comprehensive treatment the
interested reader is referred to [12].
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Figure 13: Full component-AAM Face Model incorporating both
improved Eyes and Lips models in a single component-AAM framework.

Now Figure 13, explains its further adaptation for the entire
face region, using two sub-models: both an eye model and a
lips model. These sub-models are based on the models just
described in sections IV and V above. As for the eye region
model, at each iteration, the relevant sub-models are inferred
from the global model. Optimal fittings are determined through
an AAM fitting procedure, based solely on the shape
parameters. Then the fitted sub-models are projected back into
the global model.

In Figure 14 below we describe one practical example of
the benefits of a component-based representation, on an image
containing both pose and expression variations. This shows
how the sub-models improve fitting of the global model to the
entire face region, which in turn improves the alignment of
each sub-model with the local features which are some
important to accurate expression recognition. The first is the
result of a conventional AAM; the second picture represents
the fitting of the AAM sub-models, while the third picture
depicts the component-based result.

Figure 14: Example of shape fitting on an unseen picture with expression
and pose variations.

Now, in order to quantitatively evaluate the overall
performances of a component-based AAM, we must next
measure its accuracy in terms of expression classification/
recognition rates. But before we can do this we first consider
which AAM features are most relevant for expression analysis.
The results, presented in the next section, provide some useful
practical details for researchers working in this field.

VII. REeLevant FEaTURE EXTRACTION FOR FAciAL EXPRESSIONS

Feature selection consists of keeping the most relevant
features for classification and discarding irrelevant or
redundant features. The quality of the extracted features plays a
key role in their classification. Two types of features can be
extracted when applying an AAM: geometric features and
features depicting the texture. If required, appearance
parameters can be obtained by applying PCA on the
concatenated geometric and texture parameters. Both types of
feature are important when fitting an AAM model to unseen
images. A question we now to ask is which of these parameters
are more significant for determining and recognizing facial
expressions?

A. Features for FER — literature review and first thoughts

In chapter 4 of [12], the published research on this topic is
summarized in some detail. It was concluded that opinions are
divided in the literature. Researchers agree that shape features
have a large role to play in facial expression recognition [20],
[21], but some insist that both shape and texture features are
required [22] in order to obtain satisfactory results.

Let us begin here with a qualitative analysis. On one hand,
the skin texture of the facial region exhibits only slight changes
during facial expressions. These minor changes arise due to
local lighting effects, blushing, or wrinkling of the skin. Such
changes can be considered relatively invariant when compared
with the more obvious changes of shape observed for different
facial expressions. Such geometrical features are very directly
related to expressions. As examples, when surprised, we
widely open the eyes and eventually the mouth, resulting in an
elongated chin; when sad, we often blink; when angry, the
eyebrows are usually drawn together. Thus, we concur with the
hypothesis that shape parameters are the most significant
features in facial expression decoding. We next describe some
experiments conducted to verify our initial hypothesis [12].



B.  Quantitative determination of AAM parameters for FER

While we have just argued that the shape parameters of an
AAM face model contain the greatest “information density” for
determining facial expression, there is still likely to be a
significant amount of redundant information within this
parameter set. Contra-wise, there may also be significant useful
information contained in a small subset of the texture
parameters. Ideally we would like to be able to further refine
our use of AAM model parameters to achieve a more optimal
set of parameters which are more closely tuned to the
requirements of facial expression analysis.

Our approach to achieve this was to investigate the
particular shape parameters that best represent facial
expressions. We used both our own customized database and
images from the FEEDTUM database. A set of 42 images were
used to train the improved component model, 21 from each
database. This training set was picked to include images of
many different individuals, with varying facial poses, and
facial expressions. Corresponding recognition tests were
performed on a set of 50 unseen images from our database and
100 from FEEDTUM. A Euclidean NN based classifier was
used for measuring each category of facial expression and,
after discarding the lowest order shape parameter which is
dominated by the facial pose information, the 17 lowest order
shape parameters of the AAM model were used as features.
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Figure 15: Mean over the shape parameters over each of the seven
universal emotions.

The results are presented in Figure 15 where we have
plotted the expression recognition rates versus the number of
model parameters employed. This shows the mean over the
AAM shape parameters for each of the six universal facial
expressions and the neutral one of the training set.

A maximum of 17 shape parameters was used in total.
Then, the number of parameters is reduced, eliminating in turn
the parameter with the smallest variation across the test set of
images. As the number of parameters is reduced we are left
with the parameters which exhibit the widest variation. These
results are presented in Figure 16 where FER accuracy is
plotted against the number of shape parameters used in that
particular test.
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Figure 16: FER accuracy versus the number of shape parameters.

It can be noticed that optimal results are obtained when the
five to six most variable parameters are used. As we increase
the number of parameters beyond the 6™ parameter the model
accuracy deteriorates. We conclude that an educated choice of
parameters positively affects the system performances. In our
case, it is shown empirically that using the first 30-40% of
model parameters provides higher expression recognition rates.

C. A note on the lowest-order shape parameter

In this experiment we noted that after performing PCA on
shape parameters, the information on out-of-plane head pose
was encoded in the first shape parameter. This is explained by
the fact that the variations caused by pose cause significantly
more geometric distortion than the variation caused by
differences between individuals or between facial expressions.
Consequently, pose variation is uncorrelated to a large extent
with other sources and manifests itself in the first-order PCA
parameter.
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Figure 17: Different FER classification schemes comparing recognition rates
with and without the lowest order AAM shape parameter.

The pose parameters are very important for the AAM fitting
stage and the subsequent extraction of facial features. The pose
variation information contributes to the shape and texture of
facial features. However when analyzing facial expressions, the
lowest order pose parameter should generally be eliminated, as
it will not contain the required facial expression information.
This is illustrated in Figure 17 where we compare a range of
FER classification methods each with and without the first-
order AAM pose parameter. We note that SVM based methods
are more robust than NN methods to pose. Even where the



effect of this pose parameter are negligible it still adds an
additional computational burden which is redundant as even for
SVM the recognition rates are slightly lower with this
parameter included.

Note that this would not be the case if the model was
trained using only frontal images — but then the model would
not be able to generalize to non-frontal faces.

D. Conclusions on the significance of AAM features

Based on the results of these tests we determined that shape
parameters did indeed prove to be overall the most valuable
features for facial expression decoding accuracy. Other tests
confirmed that while shape results are comparable with the
results obtained when applying a combined shape and texture
model, i.e., when using the AAM appearance features the
number of shape parameters is significantly less. In turn the
computational requirements both for feature extraction and to
subsequently perform classification are also reduced. Thus
shape parameters on their own have a demonstrable advantage
over approaches based on texture-only and both concatenated
and merged shape and texture. These finding were also
confirmed by the authors of [21].

It should be remarked that the accuracy rates of
classification were not specifically addressed in this series of
experiments. Improvements aiming to increase the accuracy of
expression classifiers will be presented in a later section.

VIIL

The last step in a facial expression recognition (FER)
system is expression classification and recognition. In our work
two classifiers were compared: SVM [30] and NN. This choice
is based on their positive performances in the literature. As we
designed them, the classifiers use as input relevant AAM
parameters and they present at output the choice between two
facial expressions. When dealing with poses, the pose
parameters are discarded as described previously.

ExPRESSION CLASSIFICATION AND RECOGNITION

A. Defining a fixed set of classes for facial expression

Facial Action Coding System (FACS), originally developed
by Ekman and Friesen in 1976 [22], is the most widely used
coding system in the behavioural sciences. The system was
originally developed by analysing video footage of a range of
individuals and associating facial appearance changes with
contractions of the underlying muscles. The outcome was an
encoding of 44 distinct action units (AUs), i.e., anatomically
related to contraction of specific facial muscles, each of which
is intrinsically related to a small set of localised muscular
activations. Using FACS, one can manually code nearly any
anatomically possible facial expression, decomposing it into
the specific AUs and their temporal segments that produced the
expression. All resulting expressions can be described using
the 44 AUs described by Ekman or a combination of the 44
AUs. In 2002, a new version of FACS is published, with large
contributions by Joseph Hager [23].

Ekman and Friesen [24] have also postulated six primary
emotions which they consider to be universal across human
ethnicities and cultures. These six universal emotions,
commonly referred as basic emotions are: happiness, anger,
surprise, disgust, fear, and sadness illustrated in Figure 18. The
leading study of Ekman and Friesen [24] formed the origin of

facial expression analysis, when the authors proclaimed that
the six basic prototypical facial expressions are recognised
universally. Most researchers argue that these expressions
categories are not sufficient to describe all facial expressions
in detail. However, most of the existing facial expression
analysers still use Ekman and Friesen’s theory.

We also include the neutral expression, or a face without
expression as a seventh category.

Figure 18: On each row are represented the six universal facial
expressions and the neutral state, as expressed by different subjects (in
order, anger, happiness, neutral, surprise, fear, sadness, and disgust).

B.  Expression classification

The choice of the two classifiers is based on their positive
results obtained in the literature. In [8] it is stated and it is
proved by experiments for gender classification and face
recognition that SVM 1is typically among the top two
classifiers, and the other top ranking classifier is one of the
Euclidean-NN rule or the cosine-NN rule.

1) Nearest Neighbour (NN)-based classifier
We next present some experimental results with variations
on the NN technique to determine its practical utility. In
particular we investigate several different types of similarity
metric and templates for NN, including the Euclidean, cosine,
and Mahalanobis distances. Also, two types of templates can
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be employed, based on calculating the mean or the median over
the input AAM parameters.

For these experiments each picture in the test set is
classified by comparing its parameters with a template
corresponding to each expression. The class yielding the
minimum distance is selected. The templates for each class are
obtained by a mean, or a median, over the shape parameter
vector for each expression. The classifiers are of type
expression 1/expression 2, i.e., neutral/non-neutral, sad/non-
sad, angry/non-angry, disgusted/non-disgusted, fear/non-fear,
surprised/non-surprised, and happy/non-happy, and of type
expression/non-expression. Considering that we have six
expressions and the neutral one, 28 classifiers are obtained,
seven for the former type and 21 for the latter.

For our first set of experiments the AAM training and test
sets coincide, i.e., there are no unseen images. This is so that
we do not bias our results with poor AAM fittings. The Tables
NN1-NN4 summarise the classification rates, as for example,
in Table 8.2: the system 80% correctly recognises angry from
non-angry faces and 75% angry from disgusted faces.

TaBLE NN1. EXPRESSION CLASSIFICATION ACCURACIES (%) FOorR THE MMI
DATABASE (TRAINING AND TEST SETS OVERLAP) WHEN USING A NN WITH A
MEAN TEMPLATE RULE- AVERAGE OF EXPRESSION CLASSIFICATION 83.67 %.

A D F H N Sa Su
80 75 85 90 75 80 87.5

D 87.5 85 95 925 95 95
F 57.5 85 67.5 725 825
I 875 85 95 95
N 80 70 85
Sa 85 87.5
Su 85

TaBLE NN2. EXPRESSION CLASSIFICATION ACCURACIES (%) FOR THE MMI
DATABASE (TRAINING AND TEST SETS OVERLAP) WHEN USING A NN WITH A
MEDIAN TEMPLATE RULE - AVERAGE OF EXPRESSION CLASSIFICATION

83.41%.

A 825 90 725 715 775 9 85
D 85 90 825 90 97.5 925
F 675 75 75 85 825

H 775 75 §7.5 90
N 920 725 85
Sa 875 88
Su 83

As can be noticed from these experimental results, a
template obtained by averaging the AAM shape parameters
outperforms, slightly, a template based on the median
approach.

TaBLE NN3. EXPRESSION CLASSIFICATION ACCURACIES (%) FOR THE
FEEDTUM DATABASE (TRAINING AND TEST SETS OVERLAP) WHEN USING A
NN WITH A WITH A MEAN TEMPLATE RULE - AVERAGE OF EXPRESSION
CLASSIFICATION 93.58 %.

A D F H N Sa Su

A 100 96.7 934 100 96.7 96.7 100
D 80 90 100 70 90 100
F 83.4 967 80 934 100
H 90 90 100 100
N 100 934 100
Sa 80 100
Su 100

TaBLe NN4. EXPRESSION CLASSIFICATION ACCURACIES (%) FOR THE
FEEDTUM DATABASE (TRAINING AND TEST SETS OVERLAP) WHEN USING A
NN WITH A MEDIAN TEMPLATE RULE - AVERAGE OF EXPRESSION
CLASSIFICATION 89.79%.

A D F H N Sa Su

A 100 634 934 100 96.7 90 100
D 73.4 867 967 70 934 100
F 73.4 966 66.7 90 93.4
H 90 90  96.7 100
N 834 86.7 100
Sa 834 100
Su 100

Generalization of the AAM to unseen subjects is tested in a
second series of experiments with leave-one-out tests, in which
images of the tested subject are excluded from training. As
might be expected we observe a decrease in the classification
accuracies. Tables NN5 and NN6 summarize the
corresponding results of these tests. It can be noticed also that
the classifier performs better on the FEEDTUM database; the
MMI presents more variations in illumination, a fact that
affects the AAM fitting and, in consequence, the precisions of
facial feature extraction, particularly for unseen images.

TaBLE NNS. EXPRESSION CLASSIFICATION ACCURACIES (%) For THE MMI
DATABASE (TRAINING AND TEST SETS DO NOT OVERLAP) WHEN USING A NN
WITH A MEAN TEMPLATE RULE- AVERAGE OF EXPRESSION CLASSIFICATION

62.99 %.

A D E H N Sa  Su
A 8333 50 634 80 50 634 76.7
D 60 70 667 56.7 534 734
E 567 834 56.7 80 634
H
N

70 734 534 80
60 567 834
Sa 60  86.7
Su 63.4
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TaBLE NN6 EXPRESSION CLASSIFICATION ACCURACIES (%) FOR THE
FEEDTUM DATABASE (TRAINING AND TEST SETS DO NOT OVERLAP) WHEN
USING A NN WITH A MEAN TEMPLATE RULE - AVERAGE OF EXPRESSION
CLASSIFICATION 66.94%.

A D F H N Sa Su
A 8333 50 634 80 50 634 76.7
D 60 70  66.7 567 534 734
F 56.7 834 567 80 63.4
H
N

70 734 534 80
60 56.7 834
Sa 60 86.7
Su 63.4

We conclude that a template obtained by averaging the
AAM shape parameters outperforms, slightly, a template based
on the median approach. Thus in the experiments that follow, a
template obtained by averaging the shape parameters is used
for NN. From these experiments on NN-based expression
classification we determined that Euclidean and cosine
distances perform almost equally well, but there is a slight
advantage for the Euclidean distance from the point of view of
a more consistent level of performance. Thus we recommend
use of the Euclidean distance as being representative of the
optimal NN technique.

2) Support Vector Machines (SVM) Classifier

We next present our experiments on SVM classifiers to
determine the optimal settings for SVM when applied to
expression classification. Here we search for the best kernel
function, and also for the optimal settings for each function.
Again the interested reader is referred to [12] for background
details on this work. Two potential kernel functions are
investigated: the residual basis function (RBF) and the
polynomial function. Best grade for a polynomial kernel and
the optimal 0 values for an RBF kernel are searched.

In the first part of the experiment, seven SVM classifiers of
type expression 1/expression 2 are built to distinguish the six
universal expressions and the neutral one. The polvnomial
kernel, with order from 1 to 6 and the RBF kernel with 9 from
22 to 2° results are investigated. The results for the MMI
database are detailed in Table SVMI. The optimal kernel
function proved to be RBF, with 0 fixed on small values. It is
our preferred choice based on the accuracy and the consistency
of its results. In a second series of experiments we sought to
confirm the previous conclusions, this time using 28 classifiers,
as in our earlier NN trials. The results, presented in tables
SVM2 and SVM3, confirm that RBF with 0 fixed on small
values achieves the highest classification rates.

We conclude that the RBF kernel function with 0 fixed on
small values gave the best results. Our findings are confirmed
also in the literature, where the RBF kernel is the most
common function to be used in expression recognition with
SVM. The choice is also motivated by theory. RBF has fewer
adjustable parameters than any other commonly used kernel
and it thus has less numerical complexity.

TaBLe SVM1 EXPRESSION CLASSIFICATION USING SVM ror THE MMI
DATABASES, WHEN USING DIFFERENT KERNELS.

Classificr Polynomial-grade

1 2 3 4 L3 6
H/non-H 887 T87 827 654 594 514
D/mon-D 56 467 46 46 414 407
Sumon-Su 747 527 514 50 46 447
A/non-A 514 474 474 46 534 534

Samon-Sa 74 58 54 474 454 434

F/mon-F 78.7 72 714 647 607 54
N/non-N 62.7 56 594 547 507 455
Average 69.5 588 589 535 3l 47.6

Classifier RBF

A A A
H/non-H 787 82 827 827 90 927 927
D/non-D 634 58 607 554 707 794 627
Su/mon-Su 407 467 614 714 72 714 687
A/mon-A 714 714 40 727 66 70 48
Safmon-Sa 66 64 614 627 694 68.7 70.7
F/non-F 694 694 70 707 727 72 72
N/non-N 387 427 587 627 614 794 594

Average 61.2 621 622 684 71.8 763 678

TaBLe SVM2. Accuracy (%) oF EXPRESSION cLasSIFICATION oN FEEDTUM
FOR THE AAM SHAPE PARAMETERS WHEN APPLYING A SVM crLassIFIER FOR RBF
2%, AVERAGE OF EXPRESSION CLASSIFICATION 69.43%.

A D F H N Sa Su

A 70 63 70 66.7 70 70 73.4
D 79.4 0634 70 734 534 70

E 72 66.7 56.7 80 534
H 92.7 734 60 66.7
N 794 534 80

Sa 68.7 76.7
Su 71.4

TasLe SVM3. Accuracy (%) OF EXPRESSION CLASSIFICATION ON MMI FOR THE
AAM SHAPE PARAMETERS WHEN APPLYING A SVM cLAsSIFIER FOR RBF 2%
AVERAGE OF EXPRESSION CLASSIFICATION 62.59%.

A D F H N Sa Su
A 625 55 65 52.% BH2:15 55 65
D 65 65 52.5 60 62.5 775
F 55 62.5 60 525 7715
H
N

57.5 575 65 75

525 373 T73
Sa 578 75
Su 80
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C. Expression Recognition

Now, after we trained a set of classifiers to discriminate
between two facial expressions, we would like to be able to
associate a human face with one of the six universal
expressions or the neutral one. This process is known as facial
expression recognition [25]. We will again compare NN and
SVM based techniques, but this time adapted for a multi-class
decision framework.

We begin by presenting the results from a series of
experiments to investigate the performances of NN in
expression recognition. Then we describe techniques to adapt
the binary SVM to a multi-class problem, such as expression
recognition. Results are presented for some of these
approaches, and we make an empirical determination of the
most suitable approach.

1) Nearest Neighbour

The first set of experiments was performed on FEEDTUM,
MMI and our own database using the Euclidean-NN and the
optimal number of 7 shape parameters. Between 20 and 30
pictures were used for training and 150 test images were drawn
each from FEEDTUM and MMI with an additional 50 from
our own database. Table AAMI1 summarises expression
recognition rates when a conventional AAM facial
representation is used. It can be noticed that the highest
recognition rates are obtained on the MMI database. This is
explained by the fact that MMI has a better image resolution
and less variation in illumination that the other datasets we
used. And as we would expect, the poorest results were
obtained on our own database which contains the strongest
pose and illumination variations.

These results serve mainly to confirm the relatively poor

performance of conventional AAM.

TABLE AAMI1-SUMMARY OF THE SYSTEM ACCURACIES (%) FOR
RECOGNISING EMOTIONS WITH EucLIDEAN-NN.

Database Recognition rate (%)
FEEDTUM 35.71
MMI 40.88
Our database 22.66
Overall 33.08

2)  Multi-class SVM

By their nature SVMs are binary classifiers. However, there
exist strategies by which SVMs can be adapted to multi-class
tasks, such as One-Against-One (1Al), One-Against-All
(1AA), Directed Acyclic Graph (DAG), and SVMs in cascade
structures. In the following experiments we only exemplify the
1Al and the cascade structures. The choice is based on their
simplicity and their good results presented in the literature [26],
[27]. The following experiments use the same test inputs as the
NN tests presented in table AAMI.

For the first part of this experiment, we employed the 1A1
approach. Altogether 21 classifiers are applied for each picture
in our test-bench. A general score is calculated for each picture.
The “recognized” facial expression is considered to be the one
which obtains the highest score. As an example, to calculate

the score for a “happy face” we apply: happy/fear; happy/sad;
happy/surprised; happy/neutral; happy/angry; and
happy/disgusted. Every time that a happy face is identified a
counter is incremented that represents its score. The results are
summarised in Table AAM2.

TABLE AAM2-EXPRESSION RECOGNITION ACCURACIES FOR 1AA-SVM
oN THE FEEDTUM anp MMI DATABASES.

Emotion FEEDTUM (%)  MMI (%)
Surprise 71 76.1

Fear 66.3 62.5
Happiness 65.4 62.5
Anger 064.8 56.8
Neutral 62.8 60.4
Sadness 61.5 59.7
Disgust 57.6 64
Overall 64.2 63.15

In the second part of the experiment, another alternative to
extend the binary SVM to a multi-class SVM is investigated. A
cascaded structure consisting of the most effective six
classifiers of the seven which classifying the six universal
expressions and the neutral expression are used. The workflow
and the corresponding results are summarized in Figure 17.
The figure shows the recognition rate after each stage of the
cascade, e.g. our system correctly recognizes a surprised face
with a probability of 84.5% or an angry face with a probability
of 70%.

‘ Surprise ‘ ‘ Surprise ‘
v B45% 1 914%
‘ Happiness ‘ ‘ Fear
v 6i% 3 985%
‘ Fear ‘ ‘ Happiness ‘
v 1% 1 5B6%
‘ Sadness ‘ ‘ Anger
§ 8% } 64%
‘ Neutral ‘ ‘ Neutral
4 5850% { 585%
‘ Anger ‘ ‘ Sadness ‘
IR } o
Disgust 32% Disgust 50%

MM Average 59 5% FEED Average 64 8%

Figure 18: Performances of expression recognition of SVM classifiers in a
cascade structure, for MMI and FEEDTUM databases

D.  Conclusions on classifiers performances

In this section we analyzed approaches and corresponding
results for expression classification and recognition in still
images. Two classifiers, namely SVM and NN, were
compared. After performing a series of five experiments we
conclude the following:

Overall, happiness proved to be the most recognisable
expression, followed by surprise. These observations can be
explained by the fact these particular expressions affect the
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shape of the facial features more than other expressions. Note
the open mouth and raised mouth corners - these expressions
are followed by anger, sadness, disgust, neutral state, and fear.

The results prove system behavior is consistent across
subjects of both genders and several races and ages.

SVM is more effective than NN as a classifier both
w.r.t. higher classification/recognition rates and better
consistency of the results

Best results for SVM were obtained when using RBF
kernel function with 9 fixed on small values.

Best results for NN were obtained when using the
Euclidean distance and a template obtained from averaging the
shape parameters as a metric for classification. These settings
are also to be used in our next series of experiments.

IX. FiNaL Resurrs anp AppLicaTiONs UsING Our MoDEL

A. FER compared across different modeling strategies

Towards the end of the previous section we presented
results for both NN and SVM FER using a conventional AAM
model for feature extraction. As expected the results of both
approached were quite disappointing. In this section we present
a summary of detailed comparisons across different modeling
strategies for both NN and SVM techniques. As before, the
interested reader is referred to [12] for additional details.

TABLE NN-FiNaL - SYSTEM AcCURACY (%) FOR CLASSIFYING FACIAL
EXPRESSIONS USING EYE-AREA, MOUTH AREA, FACE MODELED WITH A
CONVENTIONAL OR COMPONENT-BASED AAM, witH EucLIDEAN-NN

The expression classification and recognition methods are
tested on the specialized databases FEEDTUM [26], and [27]
and MMI [18], while their accuracy against pose variations is
tested on pictures collected especially for this experiment. The
results obtained from our tests, suggest that the system is
robust in dealing with subjects of both genders. Also, it is
independent of race and age.

Here the contributions of each of the AAM sub-models to
expression analysis are evaluated. The results are compared
with the results of a holistic AAM face model and a
component-based AAM facial representation. Table NN-Final
summarizes the classification results for a mouth model, two-
eye model, a conventional AAM face model, and a component-
based face AAM when using NN. In the corresponding Table
SVM-Final we show corresponding results for the SVM
classification scheme.

B. Comparison and discussion of FER results

The classification rate average when using a component-based
AAM is of 73.02%, while for a classical AAM is of 69.43%. The
results confirm the  improvement brought by a sub-models
representation although these are not quite as impressive as we would
have felt from the initial improvements noted during our studies on the
feature extraction and the classifiers for individual facial expressions.
From these results it would appear that the SVM is quite good at
compensating for the deficiencies of the conventional AAM and has
reduced the benefits we would have expected from the use of our
improved component-AAM approach.

TABLE SVM-FINAL - SYSTEM ACCURACIES (%) FOR SVM CLASSIFICATION
OF EMOTIONS A CONVENTIONAL(1) AND COMPONENT-BASED(2) AAM.

Classifier p =
Eyes Lips Face Comp
Surprised/ 44.37 55.87 85.83 83.33
Disg. (%)
Surprised/ 28.75 69.37 88.33 83.33
Happy (%)
Happy/Sad 41.87 46.25 68.33 82.22
(%)
Surprised/ 33.12 51.66 93.33 83.33
Sad (%)
Overall (%) 37.02 55.78 83.95 83.05
Classifier A aad

Eyes Lips Face Comp
Surprised/ 73.12 76.66 85.62 78.33
Disg. (%)
Surprised/ GR.75 75 86.25 79.16
Happy (%)
Happy/Sad 72.5 50 73.12 77.5
(%)
Surprised/ 69.37 52.5 77 73.33
Sad (%)
Overall (%) 70.93 63.54 80.49 77.08

A D F H
1 2 l 2 1 2 1 2
A 70 75 63 75 70 75 667 68
794 734 634 70 70 75
F 72 70 667 734
H 92.7 934
N
Sa
Su
N Sa Su
1 2 1 2 1 2
A 70 75 70 79.4 | 734 687
73.4 75 534 68 70 714
F 56.7 68.7 80 83.4 | 534 63
H 734 75 60 75 66.7 667
N 794 68.7 | 534 63 80 834
Sa 68.7 634 | 767 75
Su 714 734
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X.  ArpLicATION TO CoMPUTER GAMING W ORKFLOWS

Our system demonstrates the real-time capability to
determine a persons emotions. Such a system suggests a range
of applications relevant to computer gaming environments,
both single and multi-player.

A.  Adaptation of game difficulty based on user emotions

Most computer games allow a user to select between a
number of difficult levels. Typically this selection is made only
once, at the beginning of a game and cannot be changed
without starting a new instance of the game.

We envisage a new game workflow where the emotions
presented by a user via their facial expressions are evaluated in
an ongoing basis and where certain criteria are met the difficult
level of a game will be adjusted upwards or downwards
accordingly. In particular we can use the angry, disgusted and
sad face expressions as negative indicators suggesting that the
current difficult level is making the player unhappy. If a user
continues in such negative states then after a couple of minutes
it would be important to ease the difficulty level or to provide
some hints to achieving the next gameplay goal. Contra-wise if
the player is showing too much neutral face then it is likely that
the game has become too easy and they are bored. A happy
face can be considered as an indicator of the correct level of
difficulty as the user is still enjoying the game and presumably
succeeding in realizing their objectives.

B.  Adapting Game Workflow from User Responses

In addition to the basic determination of difficulty level we
have also demonstrated a graded classification of several of
these emotions in a real-time embodiment [12]. When
combined this enables not only the classification of these
expressions but a measurement of the transition from a mild to
a more intense expression. Such a metric provides interesting
possibilities for adapting the more detailed workflow and
storyline of a game.

Here we take the use of facial expressions to the next level
suggesting that the actual workflow and storyline of the
gaming environment can be adapted according to the emotional
state of the game player at critical waypoints or challenges
along the game path. In conventional gaming such alterations
can only be achieved based on the actual outcomes of a
challenge in the game environment. Our techniques offer a
means for the game designer to achieve a richer and more
detailed interaction with the players state of mind during and
immediately after critical junctures in the gaming storyline.
immediately after critical junctures in the gaming storyline.

C. Real-time personalized avatars

In a recent computer game, Little Big Planet, the game
avatars associated with each player can be endowed with
rudimentary facial expressions; pushing the up-arrow on the
gamepad will generate a smiling face; a second press makes the
expression even happier and a few more button-presses and
your avatar will have a very silly grin throughout the game!
Our concept is more challenging — we propose the dynamic
detection of user facial expression which is mirrored by their
in-game avatar in real-time.

Such a concept is not unknown in the literature. For
example, Y. Fu et al have presented a novel framework of
multimodal human-machine or human-human interaction via
real-time humanoid avatar communication for real-world
mobile applications [28]. Their application is based on a face
detector and a face tracker. The face of the user is detected and
the movement of the head is tracked detecting the different
angles, sending these movements to the 3D avatar. This avatar
is used for low-bit rate virtual communication. The drawback
of this approach is that the shape of the avatar needs to be
specified by the user an forward-backward movement of the
user is not detected so the avatar appears as a fixed-distance
portrait in the display.

In a companion paper we describe an enhanced face model
derived from active appearance model (AAM) techniques
which employs a differential spatial subspace to provide an
enhanced real-time depth map. Employing techniques from
advanced AAM face model generation [31] and the
information available from an enhanced depth map we can
generate a real-time 3D face model. The next step, based on the
3D face model is to generate a 3D avatar that can mimic the
face of a user in real time. We are currently exploring various
approaches to implement such a system using our real-time
stereoscopic imaging system.

REFERENCES

[11 Yang, M.-H., D.J. Kriegman, and N. Ahuja, Detecting Faces in Images:
A Survey. IEEE Transactions on pattern analysis and machine
intelligence, 2002. 24(1): p. 34-59.

[2] P. A. Viola, M. J. Jones, “Robust real-time face detection”, International
Journal of Computer Vision, vol. 57, no. 2, pp. 137-154, 2004.

[3] http://www.mathworks.com/matlabcentral/fileexchange/19912
[4] G. Bradski, A.Kaechler, and V. Pisarevski, "Learning-based computer

vision with intel's open source computer vision library," Intel
Technology Journal, vol. 9, no. 2, pp. 119-130, May 2005.

[5] Zhang and F.S. Cohen Component-based Active Appearance Models for
face Modeling, in International Conference of Advances in Biometrics,
ICB, Hong Kong, China, January 5-7 2006.

[6] Vishnubhotla, S., Support Vector Classification. 2005.

[7] Dasarathy, B.V., Nearest Neighbor (NN) Norms:
Classification Techniques. 1991

[8] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance
models”, Lecture Notes in Computer Science, vol. 1407, pp. 484—, 1998.

[91 M. Nusseck, D. W. Cunningham, C. Wallraven, H. H. Biilthoff, The
contribution of different facial regions to the recognition of
conversational expressions, Journal of Vision, 8(8):1, pp. 1-23, 2008.

NN Pattern

[10] I Bacivarov, M. lonita, P. Corcoran, Statistical Models of Appearance
for Eye Tracking and Eye-Blink Detection and Measurement. IEEE
Transactions on Consumer Electronics, August 2008.

[11] 1. Bacivarov, M.C. Ionita, and P. Corcoran, A Combined Approach to
Feature Extraction for Mouth Characterization and Tracking, in ISSC,
Galway, Ireland, 2008.

[12] Ioana Barcivarov, “Advances in the modeling of Facial Subregions and
Facial Expression using Active Appearance Modeling Techniques”, PhD
Thesis, National University of Ireland Galway, June 2009.

[13] M.D. Cordea, EM. Petriu, T.E. Whalen, “A 3D-anthropometric-
muscle-based active appearance model, in IEEE Symposium on Virtual
Environments”, Human-Computer Interfaces and Measurement
Systems, (VECIMS), pp. 88-93, 2004.

[14] H. Choi, S. Oh, “Real-time Recognition of Facial Expression using
Active Appearance Model with Second Order Minimization and Neural

Network”, International IEEE Conference on Systems, Man and
Cybernetics, SMC 06, vol. 2, pp.1559 — 1564.

15



[15]

[1e]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

N. Eveno, A. Caplier, P.Y. Coulon, New color transformation for lips
segmentation, Proceedings of IEEE Fourth Workshop on Multimedia
Signal Processing, October 2001, Cannes, France, pp. 3-8.

M. Pantic, L. J.M. Rothkrantz, "Automatic Analysis of Facial
Expressions: The State of the Art", IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 22, no. 12, 2000, pp 1424-1445.

M. Pantic, M. Tome, LI.M. Rothkrantz, "A Hybrid approach to mouth
features detection", in Proceeding of the 2001 Systems, Man and
Cybernetics Conference, 2001, pp. 1188-1193.

M. Pantic, M. F. Valstar, R. Rademaker, L. Maat, Web-based database
for facial expression analysis, IEEE International Conference on
Multimedia and Expo (ICME’05), http://www.mmifacedb.com, 2005.

S. Chindaro, F. Deravi, "Directional Properties of Colour Co-occurrence
Features for Lip Location and Segmentation", Proceedings of the 3rd
International Conference on Audio and Video-Based Biometric Person
Authentication, pp. 84 - 89, 2001.

Lucey, S., A.B. Ashraf, and J. Cohn, “Investigating Spontaneous Facial
Action Recognition through AAM Representations of the Face”, Face
Recognition Book,edited by K. Kurihara, ProLiteratur Verlag,
Mammendorf, Germany, 2007.

Zalewski, L. and S. Gong. “2D statistical models of facial expressions
for realistic 3D avatar animation”, in Computer Vision and Pattern
Recognition, CVPR. 20-25 June 2005

Kotsia, I, et al. “Texture and Shape Information Fusion for Facial

Action Unit Recognition”, in First International Conference on
Advances in Computer-Human Interaction (ACHI). 2008.

Hager, J., P. Ekman, and W. Friesen, “Facial action coding system”, Salt
Lake City, UT: A Human Face, 2002.

Ekman, P. and W. Friesen, “Facial Action Coding System: A Technique
for the Measurement of Facial Movemen”,. Consulting Psychologists
Press, Palo Alto, 1976.

Y.Tian, T. Kanade, J. F. Cohn, Facial Expression Analysis, Book
Chapter in Handbook of face recognition, S.Z. Li & A.K. Jain, ed.,
Springer, October, 2003.

Wallhoff, F, “The Facial Expressions and Emotions Database Homepage
(FEEDTUM)”, www.mmk.ei.tum.de/ waf/fgnet/feedtum.html. Sept.
2005.

Wallhoff, F., et al. Efficient Recognition of authentic dynamic facial
expressions on the FEEDTUM database. in IEEE International
Conference on Multimedia and Expo. 9-12 July 2006.

(28]

[29]

(30]

(311

[32]

Hao Tang; Yun Fu; Jilin Tu; Hasegawa-Johnson, M.; Huang, T.S.,
"Humanoid Audio—Visual Avatar With Emotive Text-to-Speech
Synthesis," Multimedia, IEEE Transactions on , vol.10, no.6, pp.969-
981, Oct. 2008

M. C. Ionita, "Advances in the design of statistical face modelling
techniques for face recognition”, Ph.D. Thesis, National University of
Ireland Galway, December 2008.

Gualtieri, J.A. and R.F. Cromp. Support vector machines for
hyperspectral remote sensing classification. in 27th AIPR Workshop:
Advances in Computer Assisted Recognition. 1998. Washington, DC:
SPIE

M.C. Ionita and P. Corcoran, “Enhanced Real-Time Face Models from
Stereo Imaging for Gaming Applications”, at International IEEE
Consumer Electronics Society's Games Innovations Conference 2009
(ICE-GIC 09), London, UK.

I. Andorko and P. Corcoran, “FPGA Based Stereo Imaging System with
Applications in Computer Gaming”, at International IEEE Consumer
Electronics Society's Games Innovations Conference 2009 (ICE-GIC
09), London, UK. .

Ioana Bacivarov received the M. Eng. Degree in Signal
Processing from the National Polytechnic Institute of
Grenoble, France and from the University "Politehnica"
of Bucharest, Romania in a double diploma agreement
in 2006, 2007 respectively. She is currently pursuing a
Ph.D. degree in Image Processing & Computer Vision
at NUI, Galway. Her research interests include signal
processing and pattern recognition with
applications in face recognition.

Peter Corcoran received the BAI (Electronic
Engineering) and BA (Math’s) degrees from Trinity
College Dublin in 1984. He continued his studies at
TCD and was awarded a Ph.D. for research work in the
theory of Dielectric Liquids. He is currently Vice-Dean
of research in the Collge of Engineering & Informatics,
National University of Ireland Galway. His research
interests include embedded systems, home networking,
digital imaging and wireless networking technologies.

16



