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Abstract 

Polymeric hollow spheres because of their tunable properties can be used as efficient carriers of 

various therapeutic molecules. However, the entry of these synthetic vehicles into cells, their cell 

viability and blood compatibility depend on their physical and chemical properties e.g. size, surface 

charge. Herein, we report the effect of size and surface charge on cell viability and cellular 

internalization behaviour and their effect on various blood components using chitosan/polyglutamic 

acid hollow spheres as a model system. Negatively charged chitosan/polyglutamic acid hollow 

spheres of various sizes 100, 300, 500 and 1000nm were fabricated using a template based method 

and covalently surface modified using linear polyethylene glycol and methoxyethanol amine to 

create a gradient of surface charge from negative to neutrally charged spheres respectively. The 

results here suggest that both size and surface charge have a significant influence on the sphere’s 

behaviour, most prominently on haemolysis, platelet activation, plasma recalcification time, cell 

viability and internalization over time. Additionally, cellular internalization behaviour and viability 

was found to vary with different cell types. These results are in agreement with those of inorganic 

spheres and liposomes, and can serve as guidelines for tailoring polymeric solid spheres for specific 

desired applications in biological and pharmaceutical fields, including the design of nano to 

submicron sized delivery vehicles. 

 

Keywords: size, surface charge, cell viability, internalization, blood compatibility, nanospheres, 

microspheres 
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1. Introduction 

Nanoscale technology, an emerging field in biomaterials offers the opportunity of developing and 

optimizing biomaterials in a clinically translational form such as synthetic capsules or hollow 

spheres to deliver therapeutics [1]. In the past few decade there has been growing interest in the 

design of biomaterial-based delivery vehicles to use them as a depot for various therapeutic 

molecules e.g. gene, growth factors [1-6]. Among several methods for the fabrication of hollow 

spherical structures from synthetic or natural polymer, the template based method is an attractive in 

creating monodisperse nano to micron-sized hollow spheres [7]. The template method employs 

either coating of a single polymer or layer by layer coating of multiple polymers on a sacrificial 

template [4, 8]. Hollow spheres thus fabricated can be designed with various structural 

characteristics such as surface charge, size, shell thickness, pore size and mechanical strength. 

These modifications allow for efficient loading and sustained release of various therapeutics e.g. 

genes, peptides and drugs for the desired clinical targets [7].  

However, therapeutic efficacy of any micro or nano size delivery vehicle depends on their cellular 

internalization behaviour, cell viability and blood compatibility. It is now an established fact that 

small physicochemical differences have significant biological implications in the 

cellular internalization and other biological processes of solid spheres [9]. Size and surface charge 

can affect the efficiency and pathway of cellular internalization for liposomes [10], quantum dots 

[11], polymeric spheres [12, 13], gold spheres [14, 15], silver [15] and silica spheres [16] by 

influencing the adhesion of the particles and their interaction with cells [17]. Also, for in vitro 

cytotoxicity and haemotoxicity studies, the careful and accurate characterization of particle size, 

surface charge is crucial issues [18-24]. Thus in vitro experimental studies with consistency of 

sphere size and surface charge are desired for elucidating the effects of these properties on cellular 

internalization, viability and blood compatibility.  

*Manuscript
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Previous investigations on the effects of sphere size and surface charge offered modest 

consideration to independently alter one variable at a time while monitoring the effect of each 

variable [16, 24, 25]. Although commercially available fluorescent polystyrene (PS) beads have 

been used as a model and extensively applied in evaluating the effect of particle size on cellular 

internalization and blood compatibility behaviour [12, 13, 24, 26, 27, 28] the difficulties in 

controlling the surface charge during the size control processes and the lack in surface functionality 

impaired the precise evaluation of the relationship between physicochemical properties of 

polymeric spheres and their biological process [12, 27]. No study to date has reported on the 

combinatorial effect of studies of size and charge.  

Herein, it was hypothesized that polymeric hollow sphere prepared using a template based method 

can be used as a model system to study combinatorial effect of surface charge and size on cell 

viability, cellular uptake and blood compatibility. The specific objectives of this study were to 

fabricate monodisperse chitosan/PGA hollow spheres of various sizes along with a range of surface 

charges, and to evaluate effect of both size and surface charge on the cellular viability, blood 

compatibility and cellular internalization behavior of these hollow spheres. The influence of size 

was determined by fabricating four different sizes of spheres: 100, 300, 500 and 1000nm (Figure 1), 

while the effect of surface charge was investigated by creating negative, neutral and PEGylated 

surface modified spheres. Human umbilical vein endothelial cells (HUVECs) and human umbilical 

artery smooth muscle cells (HUASMCs) were chosen for this experiment as model cell types. 

2. Materials and Methods 

2.1. Materials 

All reagents were purchased from Sigma-Aldrich (Dublin, Ireland) unless otherwise noted. PS 

beads 100 and 300 nm, sulphuric acid, chitosan (low molecular weight, 90% of deacetylation), 

ethanol, acetic acid, tetrahydrofuran (THF), PGA, phosphate buffered  saline (PBS), 2-(N-

morpholino)ethanesulfonic acid (MES), N-hydroxysuccinimide (NHS) and trypsin-EDTA, 
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methylthiazolyldiphenyl-tetrazolium bromide (MTT), 1-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide (EDC) and 2,methoxy ethylamine (MEA). PS beads 510 and 1000nm from 

GENTAUR (Brussels, Europe). PA series polyethylene glycol (PEG) (3400 Da) from Sunbright 

(NOF corporation, Japan), agar low viscosity resin kit Agar Scientific Ltd. (Essex, UK).  K3E and 

9NC vacutainers from BD (Dublin, Ireland), enzyme linked immunosorbent assay (ELISA) kit for 

human soluble P-selectin (sP-selectin) immunoassay from R&D Systems (Minneapolis, USA). 

Human C3a ELISA kit BD OptEIA
TM

 from BD Biosciences-Pharmanigen (San Jose, CA, USA), 

fluorescein isothiocyanate (FITC), TO-PRO-3 iodide and bovine serum albumin (BSA) from 

Invitrogen (Dublin, Ireland). Endothelial cell growth medium-2 (EGM-2) and smooth muscle cell 

growth media (SmGM-2) along with growth factors and cytokines from Lonza (England, UK). 

2.2. Fabrication of Different Sizes of Hollow Spheres and FITC Labelling 

Chitosan/PGA hollow spheres were fabricated as described in the protocol [4]. Briefly, a 0.5wt% 

solution of chitosan in 1% (v/v) acetic acid was added to a colloidal solution of sulfonated PS beads 

of various sizes (100, 300, 500 and 1000nm) and the mixture was then shaken for 24 h at 4 ºC. PGA 

(1.7 equivalent) in MES (0.05M, pH 5.5) was mixed for five minutes with NHS (0.8eq.) and EDC 

(0.8eq.). This was then added to the chitosan/polystyrene solution and the solution was stirred for 

24 h. Cross-linking reaction occurred over a 24 h. To obtain a surface negative charge on the native 

hollow spheres an additional 0.7 equivalent PGA was added to chitosan during the fabrication 

process. Finally, to obtain hollow spheres, PS cores were dissolved with THF and dried under 

vacuum to evaporate excessive solvent. Spheres were observed under transmission electron 

microscopy for analyzing their internal structure and size. FITC labelling was performed as 

described in our previous study [4]. PGA was labelled with FITC prior to cross-linking step during 

the hollow sphere fabrication process. Briefly, a weight ratio of 1:40 of FITC to PGA was kept 

shaking at 4 ºC for overnight. The unbound FITC molecules were removed by dialyzing. FITC 

labelled PGA was then used to fabricate the hollow spheres. 
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2.3. Alteration of Surface Charge and Function of Hollow Spheres 

Spheres of all the four sizes were used for surface modifications. For neutralization, native spheres 

were covalently cross-linked with MEA. Briefly, 50mg of chitosan/PGA hollow spheres (0.086 

mmol of carboxylic group) were dispersed in MES buffer (2-3ml, pH 5.5) in a round bottom flask 

and 22.24µl of MEA (0.258 mmol of amino group), EDC (0.172 mmol) and NHS (0.172 mmol) 

were then added.  The mixture was stirred overnight at room temperature and dialyzed to remove 

the unreacted chemicals. Surface PEGylation of these hollow spheres was performed using 

propylamine-functionalized amino-terminated PEG. 0.043 mmol of PEG was mixed with 0.086 

mmol hollow spheres with EDC (0.086 mmol) and NHS (0.086 mmol) in MES buffer (pH 5.5).  

The mixture was then stirred overnight and dialyzed to remove unreacted chemicals. Surface charge 

was analyzed in mV using zeta sizer (NanoZS, Malvern) after surface modifications of all the 

spheres.  

2.4. Cell Maintenance 

HUVECs and HUASMCs were grown in T75 flasks using EGM-2 and SmGM-2 media respectively 

and incubated at 37 °C in an atmosphere of 5% CO2. The culture medium was changed every 36 h. 

The cells were harvested and sub-cultured when > 80% confluency was observed. 

2.5. Cell Viability Study 

Cells were seeded in 96 well plates. Spheres (all 12 parameters) were added to each cell type 

(HUVEC and HUASMC) and incubated for different time point at 6, 12, 24 and 48 h.  50µl MTT 

was added to each sample 3 h prior to completion of time course (e.g. for 12 hour time point, MTT 

added at 9 h for 3 h incubation). Finally, 100µl DMSO was added, and read at 570nm. Results were 

expressed as a percentage of cell viability of treated samples compared to non-treated cells (100%) 

over specified time course.  

2.6. Cellular Internalization Behaviour of Spheres 

2.6.1. Characterization by Confocal Imaging 
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In order to visualize the spheres within HUVECs and HUASMCs, confocal microscopy was 

performed. Cells were incubated with FITC labelled hollow spheres for desired time point and then 

fixed with paraformaldehyde (4%) and stained for cytoskeleton using rhodamine phalloidin. 

 2.6.2. Characterization by Transmission Electron Microscopy 

Internalization and co-localization of spheres was characterized by transmission electron 

microscopy (TEM). Cells were incubated with 50 µg of spheres for 24 h. After incubation, cells 

were washed and fixed with paraformaldehyde, dehydrated by using a gradient of ethanol and then 

embedded into resin. After polymerisation of the resin (3 days at 60 °C), cut section of 90nm 

thickness were done using an ultramicrotome and samples were then analyzed using TEM. 

2.6.3. Quantification by Flow Cytometry 

Cells were grown in T25 tissue culture flasks for flow cytometry studies and spheres at a 

concentration of 50µg/ml concentration were added. After the desired incubation time, cells were 

trypsinized and resuspended in a buffer (1% BSA in PBS). Cells were then analyzed using flow 

cytometry for internalization efficiency. 

2.6.4. Quantification by High Content Analysis 

HUVECs and HUASMCs were seeded on 96 well plates for high content analysis (HCA). FITC-

hollow spheres were seeded and incubated for different time points 6, 12, 24 and 48 h. After the 

desired incubation times cells were fixed and stained for nucleus using TO-PRO-3 iodide. Finally, 

the plates were read using In Cell Analyzer 1000 GE Healthcare for 420nm (FITC) and 620nm (TO-

PRO-3 iodide). 

2.7. Blood Compatibility 

Human blood was drawn from healthy volunteers into vacutainers containing either EDTA or 

sodium citrate and tested with all four different sizes and surface modified modifications to 

elucidate the effect of size and surface charge of hollow spheres on various components of blood 

and to determine their effect on erythrocytes, coagulation and the complement system. Ethical 
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approval for this study was granted by the Human Ethics Committee of the National University of 

Ireland, Galway. 

2.7.1. Haemolysis 

EDTA-anticoagulated blood was centrifuged for 5 min at a speed of 900g. The serum fraction was 

removed and the volume was raised to its original using 150mM NaCl. This step was repeated twice 

and the final suspension was diluted 1:10 with 100mM phosphate buffer. 2 x 10
8
 red blood cells/ml 

were incubated with various sizes and charge of spheres each at a final concentration of 40µg/ml. 

PBS was used as a negative control whereas Triton X-100 1% (w/v) was used as a positive control. 

All samples were incubated under gentle agitation for 2 hours at 37 
°
C and centrifuged at 900g for 5 

min. The absorbance of the supernatant was measured for release of haemoglobin at 545nm. 

% Haemolysis was calculated as follows:  

 

% Haemolysis =             

                                      

2.7.2. Platelet Activation 

Whole blood was centrifuged at 85g for 15 min to remove platelet-rich supernatant. The remaining 

blood was again centrifuged for 10 minutes at 140g and mixed with the previous extracted plasma 

to get platelet rich plasma (PRP). Platelet poor plasma PPP was obtained by centrifuging the 

remaining blood for 5 min at 800g. The PRP was then diluted 1:100 with 1 % ammonium oxalate 

and adjusted to a final platelet concentration of 6 x 10
8
/ml. 300µl of PRP was incubated with 40µg 

of hollow spheres from all different sizes and surface modifications for 1 h at 37 
°
C. The 

supernatant was then centrifuged at 2000g for 10 min. Platelet activation was measured by the 

concentration of sP-selectin levels in the plasma and was determined using ELISA kit according to 

the manufacturer’s protocol. Both PPP and PRP were used as control. 

2.7.3. Complement System 

Absorbance of test sample – Absorbance of control 

Highest absorbance for positive control 
X 100 
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To assess complement activation, the cleavage of complement component C3 was monitored by 

measuring the formation of its activation peptide; C3a desArg, using a commercial C3a enzyme 

immunoassay kit (BD Bioscience). Activation studies were performed using pooled citrated plasma 

isolated by centrifugation from whole blood donations. Equal volumes of plasma and spheres in 

saline were incubated at 37 °C for 1h. Briefly, the samples were diluted with the dilution buffer 

provided in the kit and added to a microtiter plate coated with a monoclonal antibody specific for 

human C3a desArg. After one hour incubation at room temperature to allow any C3a in the sample 

to bind to the monoclonal antibody, the plates were washed and incubated with peroxidase-

conjugated rabbit anti-C3a for 15 min. Following a final wash step, the chromogenic substrate was 

added to detect the bound C3a. Absorbance was measured at 450nm. The sample C3a 

concentrations were calculated using a standard curve with net absorbance values plotted on the y-

axis for each C3a concentration indicated on the x-axis. Sample values were accepted as valid if 

they fell on the standard curve; sample values above the top end of the curve were retested 

following further dilution. Measurements were performed in duplicate. 

2.7.4. Plasma Clotting Time 

Howell’s method was employed to investigate plasma recalcification time (PRT). Blood was 

collected in a sodium-citrate vacutainers. It was then centrifuged at 3000 rpm at 8 
°
C for 20 min to 

obtain the platelet-poor plasma (PPP). 0.1ml of the PPP and 40 µg of samples suspended in PBS 

were incubated at 37 
°
C for 5 min in a 96 well plate. 0.1ml of 0.025 M CaCl2 solution was then 

added and the plasma solution was monitored for clotting by manually dipping a stainless-steel wire 

hook coated with silicone into the solution, to detect fibrin threads. Clotting times were recorded as 

the time at which first fibrin strand formed on the hook. 

3. Results  

3.1. Size and Surface Charge Analysis 
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Size analysis of hollow spheres was carried using TEM. Monodisperse hollow spheres were 

obtained for all the sizes (Figure 2). The size of hollow spheres was 110 ± 7.8nm, 315 ± 10.4nm, 

508 ± 7.6nm, and 990 ± 70nm for 100, 300, 500 and 1000nm polystyrene beads used respectively. 

Zeta potential analysis was used to characterize the surface modification. Native spheres 

characterized previously [4] (prepared with an excess of 0.7 eq. of PGA) had a resultant negative 

potential of between -35 and -40 mV for all sizes. Neutralization of the negatively charged spheres 

using MEA was achieved, with an approximately neutral value of zeta potential of - 4 mV. 

Polyethylene glycol (PEG) engraftment on the surfaces was also verified; as  the quantity of PEG 

was less than MEA, an adjustment of the zeta potential to -20 mV was observed, indicating that half 

of the carboxyl groups on the surface of the native spheres were used to link the PEG moiety 

(Figure 3). There was no significant difference in size was found after surface modifications of 

spheres (Data not shown). 

3.2. Cell Viability 

 Results related to cell viability are provided as supplementary information. The data suggests good 

cell viability for all the spheres and have been discussed briefly about their size, surface charge and 

cell type effect later in the discussion section. 

3.3. Cellular Internalization Behaviour 

3.3.1. Co-localization 

Confocal micrographs show co-localization of the negatively charged FITC labelled spheres (green) 

within HUVECs and HUASMCs after 24 h incubation (Figure 4). Confocal micrographs of 1000nm 

spheres are not shown in this report as there was negligible internalization of this size of sphere. 

100nm and 300nm spheres can be seen in the perinuclear region of the cells. Flow cytometry and 

fluorescence microscope only detect gross fluorescence that emits from cells; highly dispersed 

hollow spheres, such as single sphere, might not be detectable by either technique. The cell uptake 

of single hollow spheres must be investigated by other methods, such as TEM. Cells incubated with 
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100nm neutral hollow spheres for 24 h were observed under TEM (Figure 5). TEM micrographs 

show hollow spheres inside lysosome of both the cell types (Figure 5A and B). Figure 5C illustrates 

the endocytic pathway of hollow spheres from early endosome to lysosome inside HUVEC.  

3.3.2. Flow Cytometric Analysis of Cellular Internalization  

The impact of size and surface charge on cellular internalization was quantified at 12 h following 

incubation using flow cytometry. Figure 6 shows internalization efficiency of spheres within 

HUVECs (Figure 6A) and HUASMCs (Figure 6B). 100nm neutral spheres showed increased 

internalization in both cell types with 76 % in HUVECs and 56 % in HUASMCs.  HUASMCs had 

reduced sphere uptake than HUVECs in all the sizes and surface modifications investigated. 300 

and 500nm spheres show similar internalization efficiency in both HUVECs and HUASMCs. 

1000nm spheres, regardless of surface charge had low internalization with 9-13% internalization in 

both cell types investigated. For all the sizes, negatively charged spheres presented the lowest 

uptake profile.  

3.3.3. High Content Analysis of Cellular Internalization 

HCA enabled quantitative estimation of the internalization of FITC labelled nanospheres of 

different parameters, including size, surface charges and time points within HUVECs and 

HUASMCs. Cellular internalization was estimated in terms of relative fluorescence. The results 

found that 100nm neutral spheres were significantly more internalized (p < 0.05) when compared 

with other sizes, for PEGylated and neutrally charged spheres in both cell types,  which is consistent 

with flow cytometric data, and showed a constant increase of internalization over time from a 

relative fluorescence value of 6 to 18 in HUVECs (Figure 7). Internalization is reduced in 

HUASMCs for all sizes and surface charges (Figure 8). PEGylated 100nm nanospheres show the 

same level of internalization with HUVECs and HUASMCs with an approximate relative 

fluorescence value of 8.  Negatively charged spheres for all sizes resulted in less internalization in 

both type of cells. Also, neutral, PEGylated and negatively charged spheres of 1000nm size had 
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much less uptake for all the time points. Overall, the interaction of 100nm nanospheres with both 

cell types result in a higher degree of internalization compared to the 300, 500 and 1000nm size 

nanospheres. The effect of size on internalization is inversely related [29, 30] while the neutrally 

charged sphere seems to be more relevant than PEGylated and negatively charged spheres for 

internalization. HUASMCs seem more resistant to internalization of hollow spheres rather than 

HUVECs. 

3.4. Blood Compatibility 

A major challenge for the systemic delivery of synthetic vehicles for gene delivery is their lack of 

stability in the blood stream, their degradation, and clearance by the reticuloendothelial system, 

which makes the elucidation of their interaction with blood components essential. Several 

interactions with the family of spheres were investigated to determine the potential systemic 

delivery in vivo of the hollow spheres.  

3.4.1. Haemolysis 

In vitro analysis of red blood cells lysis is an established method to determine effect of materials 

with erythrocytes. During this analysis, phosphate buffered saline (PBS) was used as a negative 

control (0 %) and TritonX (detergent) as a positive control (100 %) of haemolysis. Negatively 

charged spheres have a significantly higher % haemolysis at sizes 300, 500 and 1000nm whereas 

PEGylated spheres have a significantly reduced % haemolysis at these sizes. 100nm spheres have a 

significantly reduced % haemolysis for all surface charges (Figure 9). Irrespective of size or surface 

charge, all spheres have a negligible effect on haemolysis (1 %). 

3.4.2. Platelet Activation 

Platelet activation upon interaction with particles is another indication of blood incompatibility as it 

could lead to thrombotic complications under in vivo conditions. It is known that polycations induce 

aggregation and activation of platelets, and this can impair platelet function [31]. In this study, 

platelet activation was quantified by the release of soluble P-selectin (sP-Selectin) after incubation 
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with all spheres. PBS was used as a negative control. The results found that size does not have a 

significant influence on the platelet activation. Negatively charged spheres however, induce a 

significantly higher level of sP- selectin (p < 0.05) when compared to other neutral and PEGylated 

spheres for all sizes (Figure 10).  

3.4.3. Complement System Activation 

Complement activation is an extremely important factor when considering synthetic cationic 

vehicles for delivery. Activation of components of the complement system could produce 

anaphylatoxins which lead to activation of the immune system [32]. Opsonization of synthetic 

carriers with complement components such as C3a and C5a could eventually lead to the clearance 

of such particles by the reticuloendothelial system which makes the elucidation of this interaction 

significant. In this study complement activation was investigated by quantifying the release of C3a 

after incubation with spheres. PBS was used as a negative control and no significant difference was 

observed between samples and the control (Figure 11).  

3.4.4. Plasma Clotting Time 

The clotting process utilizes the intrinsic and extrinsic pathway which ultimately leads to clot 

formation. The intrinsic pathway is initiated when blood comes into contact with a surface, while 

the extrinsic pathway is initiated upon vascular injury which leads to exposure of tissue factor (TF). 

Plasma recalcification profiles are used to mimic the intrinsic coagulation system in vitro. PBS was 

used as a negative control in this study. To quantify plasma recalcification profiles, T1/2 max was 

calculated as the time at which half the saturate absorbance was reached. Clotting times are 

significantly shorter (p < 0.05) for all samples when compared to the control (12.3 ± 0.3 mins). 

Negatively charged spheres significantly decreased clotting times compared to other surface 

charges at 100 and 300nm spheres. The absence of a significant effect at larger sphere size indicates 

that there is a size at which surface charge does not have an effect. The effect of size did not have a 

significant effect on the clotting time of PEGylated spheres whereas 300nm spheres had a reduced 

A 
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clotting time when surface charge was negative and neutral when compared to 500 and 1000nm 

spheres (Figure 12). 

4. Discussion 

A wide family of hollow spheres, with the potential to deliver drugs, compounds and/or genetic 

material has been developed so far in terms of size and surface charge. Sizes ranging between 100 

and 1000nm were prepared and samples were modified to obtain neutral surface charge and 

PEGylated surfaces or less negative surface charge. In order to evaluate the potential of these 

hollow spheres to be used as a delivery vehicle, cytotoxicity, cellular internalization and blood 

compatibility were investigated (Table 1). Surface charge and size exerted a significant influence on 

the sphere’s behaviour, most notably on haemolysis, platelet activation, plasma recalcification time, 

toxicity and cellular uptake over time. Smaller sizes (100nm spheres) have a better compatibility 

profile with lower haemolysis and platelet activation. Surface charge has a stronger influence on 

plasma recalcification time than size, whereas PEGylated spheres do not significantly reduce 

clotting times. HUVECs and HUASMCs have different cytotoxicity responses when incubated with 

the spheres which were quantified using MTT assay (Supplementary Figures 1-4). Size and surface 

charge had no significant effect on HUASMCs when compared with controls (Supplementary 

Figure 2 and 4). However, surface charge had a significant effect on the viability of HUVECs 

(Supplementary Figure 1 and 3). The effect of surface charge was not significant with 1000nm 

spheres; however for 100, 300 and 500nm spheres surface charge had a significant effect (p < 0.01). 

Negatively charged 100nm spheres had greater viability compared to neutral and PEGylated 

spheres. However there was a transition to neutral and then PEGylated spheres having greater 

viability with HUVECs at sizes 300 and 500nm respectively. This suggests that there is a 

synergistic relationship between the size and surface charge that dictates their cytotoxicity. 1000nm 

spheres had the highest viability with PEGylated and neutral charge spheres (p <0.05). However, 

there was no significant difference between 100 and 1000nm spheres when the surface charge was 
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negative. This is attributed to the low internalization of 100nm negatively charged spheres within 

the cells.  Cellular uptake is significantly dependant on size and surface charge and 100nm appears 

to be an optimum size for internalization for neutral and PEGylated spheres. Cellular internalization 

is also dependent on parameters, e.g. size, surface charge, incubation time and also the cell type. 

HUVECs and HUASMCs show different internalization behaviours with these spheres over 

different time points, varying size and charge. This is supported by flow cytometry and HCA data. 

100nm and other spheres show relatively increased uptake within HUVECs compared to that of 

HUASMCs, with the exception of 1000nm spheres, where internalization is insignificant for both 

cell types. 100nm neutral spheres have more uptake than 100nm PEGylated spheres; whereas there 

is no significant difference of internalization between 300nm and 500nm neutral and PEGylated 

spheres. This indicates that there is a size limit after which surface modification has no influence on 

cellular internalization. Positive charge of the cell membrane is an obvious reason for the low 

internalization of negatively charged spheres and hence internalization of spheres into cells requires 

a holistic approach that takes into account of size and surface charge.  

5. Conclusions  

FITC labelled chitosan/PGA hollow spheres with definite sphere size, surface charge, were created 

for elucidating the combinatorial effects of physicochemical properties on cellular internalization, 

cell viability and blood compatibility. This is the first study in literature that reports the 

combinatorial effect of the parameters. It was clear that physicochemical differences such as 

alternation of size and zeta potential played a vital role in internalisation behaviour of hollow 

spheres as well as on cell viability and blood compatibility. FITC labelled negative, neutral and 

PEGylated hollow spheres showed cell-line-dependent internalization behaviour. The results were 

in agreement with those of inorganic spheres and liposomes, indicating that size and surface charge 

of spheres are more important parameters than sphere’s composition. Therefore, results obtained 

using tunable chitosan/PGA hollow spheres as a model system in the present investigation could be 
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applied for other types of solid spheres as well as hollow spheres. These results are of potential 

value to serve as guidelines for predicting the behaviour of spheres for specific desired applications 

in biological and pharmaceutical fields, including design of nano to submicron sized delivery 

vehicles. 
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Figure Captions 

 
Figure 1: Schematic representation of hollow sphere fabrication and surface modifications 

Figure 2: Chitosan/PGA hollow spheres observed under TEM. (A) 100nm (B) 300nm (C) 500nm (D) 1000nm hollow 

spheres 

Figure 3: Zeta potential analysis of spheres showing net chanrge after surface modifications of all spheres. Data is 

represented as the mean ± standard deviation (n = 3). * indicates a statistically significant different between samples with 

p < 0.05  

Figure 4: Confocal micrographs of FITC labelled spheres (A) 100nm and (B) 300nm internalized into HUVECs and (C) 

100nm and (D) 300nm internalized into HUASMCs. All images were taken after 24 h incubation with cells 

Figure 5: TEM images illustrating 100nm neutrally charged spheres internalized into (A) HUVECs and inset shows the 

hollow spheres inside lysosome and (B) HUASMCs and inset shows hollow spheres inside lysosome. (C) Higher 

Magnification image of (A) showing endocytic internalization of hollow spheres from endosome (E) to lysosmes (L) near 

nucleus (N).  

Figure 6: Flow cytometry data, elucidating the effect of size and surface modifications on the internalization efficiency of 

spheres into (A) HUVECs and (B) HUASMCs at 12 h incubation 

Figure 7: High content analysis showing internalization of PEGylated, neutral and negatively charged spheres with 

HUVECs over a time course period of 6, 12, 24 and 48 h. Data is represented as the mean ± standard deviation (n = 3, p 

< 0.05) 

Figure 8: High content analysis showing internalization of PEGylated, neutral and negatively charged spheres with 

HUASMCs over a time course period of 6, 12, 24 and 48 h. Data is represented as the mean ± standard deviation (n = 3, 

p < 0.05) 

Figure 9: % Haemolysis after incubation with human erythrocytes with (A) effect of size and (B) effect of surface charge. 

Data is represented as the mean ± standard deviation (n = 4). * indicates a statistically significant different between 

samples with p < 0.05 

Figure 10: Platelet activation as indicated by sP-Selectin release (A) effect of size and (B) effect of surface charge. Data 

is represented as the mean ± standard deviation (n = 4). * indicates a statistically significant different between samples 

with p < 0.05  

Figure 11: Complement activation as indicated by C3a release (A) effect of size and (B) effect of surface charge. Data is 

represented as the mean ± standard deviation (n = 4). * indicates a statistically significant different between samples with 

p < 0.05  

Figure 12: Plasma recalcification time, quantified using calculation of the point at which the recalcification profile reaches 

half of the maximum absorbance value with (A) showing effect of size (B) showing effect of surface charge. Data is 

Captions



represented as the mean ± standard deviation (n = 4). * indicates a statistically significant difference (p < 0.05), ** 

indicates a statistically significant difference (p < 0.01)   
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Table 1: Summary of effect of size and surface charge on all parameters investigated 
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Figure 8 
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Figure 9  

 

 

 

 

A 

B 

 

10
0 

nm

30
0 

nm

50
0 

nm
 

10
00

 n
m

 
0.0

0.5

1.0

1.5
Negatively Charged

Neutrally Charged

PEGylated

*

*

*

*

Size

%
 H

a
e
m

o
ly

si
s

 

N
eg

ati
vel

y C
harg

ed

N
eu

tr
all

y C
harg

ed
 

P
E

G
yla

te
d

0 .0

0 .5

1 .0

1 .5
1 0 0 nm

3 0 0 nm

5 0 0 nm

1 0 0 0 nm

* *

*

*

*

S u r fac e  C h ar g e

%
 H

a
e

m
o

l
y

s
i
s

Figure



Figure 10  

 

 

 

 

A 

B 

 

100nm

300nm
 

500nm

1000nm

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0
N e gative ly Charge d

N e utrally Charge d

P EG ylate d

* *

*

Control

Si ze

s
P

-S
e

le
c

ti
n

 (
n

g
/m

l)

 

N
eg

ati
vel

y C
h
arg

ed

N
eu

tr
all

y C
h
arg

ed
 

P
E

G
yla

te
d

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

1 0 0 n m

3 0 0 n m

5 0 0 n m

1 0 0 0 n m

S u r fa c e  C h a r g e

s
P

-
S

e
l
e

c
t
i
n

 (
n

g
/m

l
)

Neg
ativ

ely
 C

harg
ed

Neu
tr

ally
 C

harg
ed

 

PEG
yla

te
d

0

50

100

150

200

250

100nm

300nm

500nm

1000nm

Surface Charge

sP
-S

el
ec

ti
n 

(n
g/

m
l)

 

Figure



Figure 11  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

A 

B 

 

100n
m

300n
m

500n
m

1000n
m

0

1 0 0

2 0 0

3 0 0

4 0 0

N e gative ly C harge d

N e utrally C harge d

P EG ylate d

*

C ontro l

Si ze

C
3

a
 d

e
s

A
r

g
 (

n
g

/m
l)

 

N
eg

a
t i

v
e ly

 C
h

a
r g

e d

N
e u

tr
a
l l

y
 C

h
a
r g

e d
 

P
E

G
y
la

t e
d

0

1 0 0

2 0 0

3 0 0

4 0 0

1 0 0 n m 3 0 0 n m

5 0 0 n m 1 0 0 0 n m

C o n t r o l

S u r fa c e  C h a r g e

C
3

a
 d

e
s

A
r

g
 (

n
g

/m
l
)

Neg
ativ

ely
 C

harg
ed

Neu
tr

ally
 C

harg
ed

 

PEG
yla

te
d

0

50

100

150

200

250

100nm

300nm

500nm

1000nm

Surface Charge

sP
-S

el
ec

ti
n 

(n
g/

m
l)

 

Figure



 

N
eg

at
iv

el
y 

C
har

ge
d

N
eu

tr
al

ly
 C

har
ge

d 

P
E
G

yl
at

ed

0

5

10

15
100nm

300nm

500nm

1000nm

Surface Charge

T
1

/2
m

a
x (

m
in

s
)

Figure 12  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

B 

* * 

 

100n
m

300n
m

500n
m

1000n
m

0

5

1 0

1 5

N e gat ive ly  C h ar ge d

N e ut r al ly  C har g e d

P E G y late d

*
**

 *

S i ze

T
1

/2
m

a
x (

m
in

s
)

Neg
ativ

ely
 C

harg
ed

Neu
tr

ally
 C

harg
ed

 

PEG
yla

te
d

0

50

100

150

200

250

100nm

300nm

500nm

1000nm

Surface Charge

sP
-S

el
ec

ti
n 

(n
g/

m
l)

 

Figure



Supplementary Information 

 

Results: 

                                                        

Cell Viability 
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Figure 1: MTT assay showing percentage metabolic index of HUVECs at time points 6, 12, 24 and 48 hours. HUVECs 

were incubated with (A) 100nm, (B) 300nm, (C) 500nm and (D) 1000nm spheres. Data is represented as the mean ± 

standard deviation (n = 3). * indicates statistical significance (p < 0.05) 

 

 

A B 

C D 

Figure



6 12 24 48

0

20

40

60

80

100

Neutral

PEGylated

Negative

100nm Spheres

Incubation Time (hours)

%
 M

e
ta

b
o

li
c
 I

n
d

e
x

6 12 24 48

0

20

40

60

80

100

Neutral

PEGylated

Negative

300nm Spheres

Incubation Time (hours)

%
 M

e
ta

b
o

li
c
 I

n
d

e
x

 
 

6 12 24 48

0

20

40

60

80

100
Neutral

PEGylated

Negative

500nm Spheres

Incubation Time (hours)

%
 M

e
ta

b
o

li
c
 I

n
d

e
x

6 12 24 48

0

20

40

60

80

100

Neutral

PEGylated

Negative

1000nm Spheres

Incubation Time (hours)

%
 M

e
ta

b
o

li
c
 I

n
d

e
x

 
Figure 2: MTT assay showing percentage metabolic index of HUASMCs at time points 6, 12, 24 and 48 hours. HUASMCs 

were incubated with (A) 100nm, (B) 300nm, (C) 500nm and (D) 1000nm spheres. Data is represented as the mean ± 

standard deviation (n = 3). No statistically significant effect of surface functionalization was observed between spheres. 
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Figure 3: MTT assay showing percentage metabolic index of HUVECs at time points 6, 12, 24 and 48 hours. HUVECs 

were incubated with (A) Neutral, (B) PEGylated and (C) Negative spheres. Data is represented as the mean ± standard 

deviation (n = 3). * indicates statistical significance (p < 0.05) 
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Figure 4: MTT assay showing percentage metabolic index of HUASMCs at time points 6, 12, 24 and 48 hours. HUASMCs 

were incubated with (A) Neutral, (B) PEGylated and (C) Negative spheres. Data is represented as the mean ± standard 

deviation (n = 3). No statistically significant effect of size was observed between spheres. 
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