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Abstract

Inflow and outflow boundary conditions are essential for the applica-
tion of computational fluid dynamics to many engineering scenarios. In
this paper we present a new boundary condition implementation which
enables the simulation of flow through permeable boundaries in the La-
grangian mesh-free method Smoothed Particle Hydrodynamics (SPH).
Each permeable boundary is associated with an inflow or outflow zone
outside the domain, in which particles are created or removed as required.
The analytic boundary condition is applied by prescribing the appropri-
ate variables for particles in an inflow or outflow zone, and extrapolat-
ing other variables from within the domain. Characteristic-based non-
reflecting boundary conditions, described in the literature for mesh-based
methods, can be implemented within this framework. Results are pre-
sented for simple one-dimensional flows, quasi-one-dimensional compress-
ible nozzle flow, and two-dimensional flow around a cylinder at Reynolds
numbers of 40 and 100, and Mach number of 0.1. These results establish
the capability of SPH to model flows through open domains, opening a
broad new class of applications.

1 INTRODUCTION

In many important questions in engineering fluid dynamics, the flow field ex-
tends over a very large spatial domain, but the phenomena of interest are re-
stricted to a relatively small region. Examples include turbomachinery, pipes
and channels, blood flow and external flows (where the local flow is governed
by conditions in a practically infinite “free stream”). These problems can be
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simulated successfully if the computational model is restricted to a small do-
main of interest, with boundary conditions that provide reasonable models for
the interaction of fluid in the domain with fluid in the exterior. In particular,
boundary conditions must allow fluid to enter and leave the local computational
domain. This approach is well established in Eulerian mesh-based methods.

Mesh-free Lagrangian methods such as Smoothed Particle Hydrodynamics
(SPH) have some advantages over conventional methods, particularly in complex
flows involving free surfaces and moving bodies. Oger et al. [1] and Kajtar
and Monaghan [2] give recent examples. However, Lagrangian methods are
at a disadvantage in the treatment of permeable boundary conditions. The
Eulerian frame of reference naturally describes a stationary spatial region with
inflow and outflow of fluid, while the Lagrangian reference frame follows fluid
particles which may spend only a short time traversing the spatial region of
interest. Flow into and out of a domain can be modelled in SPH with spatial
periodicity, but this is accurate only for very special cases, and its use even as
an approximation is severely restricted. Furthermore, periodic boundaries cause
particle distributions to be recycled through the domain, so that a perturbed
particle distribution may degrade without limit over time. While SPH has been
successful in the modelling of unbounded (e.g. astrophysical) processes and
wall-bounded unsteady flows (e.g. dam-break and wavemaker flows), it has not
been widely used for problems with inflow and outflow. To extend the scope of
SPH to a wider range of engineering flows, it is essential to incorporate inflow
and outflow boundaries.

This paper presents a method for accurate implementation of inflow and
outflow boundaries in SPH. The method incorporates a framework for the in-
sertion of new particles at an inflow boundary and the removal of particles at
an outflow boundary, while ensuring that appropriate mathematical boundary
conditions are enforced. Following some background material in sections 2 and
3, this framework is described in section 4, and results are shown for a simple 1D
wave propagation problem. In section 5, a non-reflecting boundary condition
due to Giles [3] is described, and its implementation in the new SPH framework
is shown. In section 6, results are presented for the new boundary conditions for
compressible flow through a quasi-one-dimensional nozzle and for flow around
a cylinder at Reynolds numbers of 40 and 100.

2 SPH DISCRETISATION

The SPH method has been reviewed in detail by Monaghan [4] and others. SPH
is based on gradient approximations of the form

∇F (x)|
x=xa

≈ −
∑

b

F (xb) ∇W (x − xa, h)|
x=xb

mb

ρb

(1)

where F (x) is a field, xa is the location of interest, m is particle mass, ρ is
density, W (r, h) is the kernel function, and h is the smoothing length. In most
implementations, W has compact support and h is defined such that the support
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radius is kh, where k is a constant. Thus, the summation is a sum over particles
b in the neighbourhood of xa, where ∇F (x) is to be evaluated. SPH is a mesh-
free method because interactions among particles depend only on their locations,
and do not require prescribed topological connections.

By applying Equation (1) to the Navier-Stokes equations, the standard SPH
formulations given below in Equations (2–4) may be derived [4].

Dρa

Dt
= ρa

∑

b

(ua − ub) · ∇Wab

mb

ρb

(2)

Dua

Dt
= −

∑

b

mb

(

pa

ρ2
a

+
pb

ρ2
b

+ Πab + Rabfab

)

∇Wab (3)

Dea

Dt
=

1

2

∑

b

mb

(

pa

ρ2
a

+
pb

ρ2
b

)

(ua − ub) · ∇Wab (4)

Here p is pressure, u is velocity and e is internal energy. For the purposes of
the present work, a calorically perfect gas is assumed and the equation of state
p = (γ − 1)ρe is used, where γ is the specific heat ratio, and e is set to zero
at temperature T = 0. The notation Wab denotes a kernel function W (r, h)
evaluated with r = xa − xb. Throughout this paper, the cubic spline kernel of
Monaghan and Lattanzio [5] is used for W , with compact support radius 2h.
Because of the symmetry of Equations (2–4) with respect to particle indices,
and the symmetry of the kernel function (such that ∇Wab = −∇Wba), each
pairwise particle interaction exactly conserves mass, momentum and energy.

Throughout this work, the basic SPH gradient estimate of Equation (1) is
corrected using the mixed gradient and kernel correction method of Bonet and
Lok [6]. The basic SPH gradient operation does not exactly reproduce the gra-
dient of a constant-valued function (i.e. it is not zero-order consistent). Bonet
and Lok have shown that their corrected gradient applied to a Shepard-corrected
kernel ensures first-order consistency and exact conservation of linear and an-
gular momentum (although it results in a loss of exact energy conservation).
Consistency correction gives a marked improvement in accuracy where the par-
ticle distribution is non-uniform, or the particle support is incomplete (i.e. the
number of neighbour particles is low) [7]. This is the main motivation for use
of a correction in the present work, since incomplete support is unavoidable in
SPH operations near boundaries.

In the momentum equation, Πab is the viscous stress between particles a and
b. For one-dimensional and quasi-one-dimensional flow in the present work, we
use the artificial viscosity formulation introduced by Monaghan and Gingold [8]
to enable shock capturing.

Πab =

{ (

−αcabϕab + βϕ2
ab

)

/ρab if uab · rab < 0
0 otherwise

(5)

where ϕab is defined by

ϕab =
huab · rab

r2
ab + η2

(6)
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In the above, cab and ρab are averages over particles a and b of the speed of
sound and density, respectively, rab = rb − ra, and uab = ub −ua. The constant
coefficients α and β determine the strength of the dissipation and the term
η, defined as h/10, serves to prevent a singularity when rab = 0. For two-
dimensional viscous flow applications, the viscous stress is approximated by the
following SPH/finite-difference combination, following Violeau and Issa [9].

Πab =
−8

ρa + ρb

µ

(

1

ρa

+
1

ρb

)

uab · rab

r2
ab + η2

(7)

where µ is the physical viscosity coefficient. Particles a and b exchange equal
and opposite viscous interparticle forces directed parallel to the displacement
between the particles. Therefore, this formulation conserves linear and angular
momentum. These properties are discussed more fully by Violeau and Issa [9]
and Basa et al. [10].

The term Rabfab∇Wab is Monaghan’s interparticle force [11] defined by

fab =
W (rab, h)

W (rab, h)
(8)

and

Rab = ζ

(

pa

ρ2
a

+
pb

ρ2
b

)

(9)

where rab is the local average interparticle spacing and ζ is a constant. This
term acts as a small short-range interparticle repulsive force and was introduced
to suppress the tensile instability in some applications. Since the ideal gas
equation of state is used in the present work, pressure is always positive and
the tensile instability does not arise, according to the analysis of Swegle et

al. [12]. However, in application to separated flow (section 6.2) particle voids
may occur in the wake of a bluff body, and we have found that the inclusion
of Rabfab in the momentum equation is effective in maintaining an adequate
particle distribution.

3 CHARACTERISTIC THEORY FOR BOUND-

ARY CONDITIONS

The method of characteristics provides a rigorous analytical framework for the
implementation of boundary conditions in numerical methods [13, 14]. If the
flow is normal to the boundary and free of shock waves and significant viscous
effects, it is governed by the one-dimensional Euler equations for isentropic
flow of a calorically perfect gas. (In practice, these conditions can often be
satisifed or approximated by suitable placement of the permeable computational
boundaries.) It can then be shown that three characteristic variables or Riemann
invariants (J+, J− and entropy s) exist which are constant along curves in the
x-t (space-time) plane defined by dx/dt = u+a, u−a, u respectively, where a is
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the speed of sound. These curves can be interpreted as the trajectories of sound
waves and material particles which carry constant values of the characteristic
variables. The characteristic variables J+ and J− are given by J± = u±2a/(γ−
1).

This approach guides the numerical implementation of boundary conditions
because it frames the governing equations in terms of information propagation.
For subsonic flow (u < a), there are always two characteristic waves running
downstream at velocities u and u + a, with one characteristic carrying informa-
tion upstream at u−a. Where flow enters the domain through an inflow bound-
ary, therefore, we should prescribe the downstream-running characteristics J+

and s at the inflow (based on knowledge of conditions outside the domain) and
determine J− at the boundary from the solution inside the domain (in other
words, allow the value of J− to propagate upstream to the boundary). Similarly,
at an outflow boundary, the method of characteristics suggests that J− should
be prescribed (i.e. determined from the exterior of the domain) while J+ and
s should be transmitted from the domain interior. (A similar analysis can be
made for supersonic flow.)

In practice, however, it is difficult to implement characteristic-based bound-
ary conditions rigorously because J+, J− and s are rarely known, and their
value outside the domain may not be independent of events inside the domain.
Variables such as velocity, pressure and temperature, on the other hand, often
are known or can be measured for the physical flow which is to be modelled.
At a minimum, however, the method of characteristics determines the number
of variables which should be prescribed at the boundary (to propagate into the
domain) and the number which should be propagated from the domain interior
to the boundary.

4 TREATMENT OF LAGRANGIAN PARTI-

CLES AT EULERIAN BOUNDARIES

Since Lagrangian SPH particles are not constrained to the boundaries of an
Eulerian (i.e. spatially fixed) domain, new particles must be defined at inlets
and removed at outlets, at a rate consistent with the physical flow rate across
each boundary. In this section, an algorithmic framework is presented for this
process. A schematic diagram of the implementation for inflow boundaries is
shown in Fig. 1. The method as presented here requires that the boundary is
planar, and that flow is normal to the boundary (in practice this can be achieved
by placing the inlet boundary far enough upstream of any flow features that may
cause the flow to be non-unidirectional). The inflow velocity may vary in time
and/or space. It is also required that a compactly supported kernel function is
used in the underlying SPH method.

An inflow zone is defined outside the flow domain by extruding the inlet
boundary in the upstream direction. The length of the inflow zone in the flow
direction is equal to or greater than the support radius of the SPH kernel func-
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Figure 1: Schematic diagram of the inflow boundary zone. A new particle a

is added when an existing particle b crosses out of the inlet zone into the fluid
domain.

tion. Every time a particle crosses from the inflow zone to the fluid domain, a
new particle is created at the upstream side of the inflow zone. This approach
maintains the required particle number density at the inflow boundary.

The updating of particle variables inside the inflow zone depends on the
analytical boundary condition to be applied. For subsonic flow, the method of
characteristics suggests that two variables must be prescribed while one is de-
termined from the domain interior. An intuitive choice is to prescribe velocity
and temperature at the inflow boundary, leaving pressure or density to be de-
termined by information propagating upstream from the interior. (Prescription
of temperature is equivalent to prescription of internal energy in the present
work, since a calorically perfect gas is modelled). To implement this boundary
condition within this SPH framework, the velocity and temperature are pre-
scribed for every particle in the inflow zone. Pressure at inflow particles is then
determined by an SPH interpolation based only on information from neighbour
particles which are inside the domain. This amounts to an extrapolation from
the interior domain into the boundary zone. Since this extrapolation is carried
out with incomplete and one-sided support, a standard SPH interpolation would
yield very poor results. For this purpose we use the reproducing kernel particle
method of Liu et al. [15], which gives first-order consistency in the boundary
extrapolations.

Particles near the boundary, but inside the fluid domain, are updated accord-
ing to usual SPH procedures. Some inflow zone particles fall inside the compact
support of near-boundary fluid particles, and thus allow boundary information
to be propagated into the domain.

The outflow zone, defined downstream of the fluid domain, is simpler to
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implement since no new particles need to be created. In this zone, one variable is
prescribed to represent the downstream conditions. If velocity and temperature
are prescribed at the inlet, as described above, then pressure or density can be
prescribed at the outlet. Extrapolation of the other two variables to the outlet
is effectively performed by convection of particles from the domain interior to
the outflow zone. The governing equations are still solved for these outflowing
particles until they flow past the downstream limit of the outlet zone and are
eliminated from the simulation. Again, because SPH operations are performed
on the outflow particles with incomplete support, at least zero-order consistency
is required.

These boundary conditions were tested for a simulation of one-dimensional
compressible flow of an ideal gas in the domain 0 ≤ x ≤ L. Particles are dis-
tributed at an initial spacing of ∆xi/L = 0.01, with h/∆xi = 1.7. Artifical
viscosity is used with α = 0.1 and β = 0 in Equation (5), and the artifical
repulsive force of Equation (8) is not used. Uniform pressure, velocity and tem-
perature are set as pi, ui and Ti respectively in the initial condition. The initial
Mach number Mi = ui/

√
γRTi is 0.1. At the inlet (x = 0) velocity and tem-

perature are prescribed as ui and Ti using the method described above, and at
the outlet (x = L) the pressure is prescribed as pi. For this trivial problem,
the steady-state solution is equal to the initial conditions, and SPH successfully
maintains the solution. However, if the initial condition is perturbed by intro-
ducing a region where p(x) < pi, left- and right-running waves are expected.
These waves must be transmitted out of the domain before the uniform steady
state can be reached. This is a more challenging test of the boundary condition
algorithm, and results are presented in Fig. 2 for an initial perturbation equal to
20% of the absolute background pressure pi. In the results, time is normalised
with respect to L/ai, the time required for a sound wave to traverse the domain
at the initial speed of sound, ai.

The results show that the algorithm successfully enforces the prescribed in-
let and outlet conditions. However, waves arriving at the boundaries around
tai/L = 0.5 are reflected back into the domain, and they delay convergence
towards steady-state. This is non-physical behaviour, since waves should prop-
agate freely through the boundaries just as they propagate through the interior
domain. In the example shown, the computation fails shortly after tai/L =
1.016, with the development of large particle voids near a boundary. How-
ever, the significance of this result is that SPH can indeed simulate permeable
boundaries defined at fixed Eulerian locations, using the framework of inflow
and outflow zones described above. The accuracy and robustness of the method
can be improved by a more appropriate choice of analytical boundary condition,
as shown in the next section.
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Figure 2: Pressure distribution at various times in a simulation of a 1D flow
at M = 0.1 with an initial perturbation in the pressure field. Velocity and
temperature are prescribed at the inlet, x = 0, and pressure is prescribed at the
outlet, x = L. Shaded bands denote the inflow and outflow zones.

5 NON-REFLECTING BOUNDARY CONDI-

TIONS

The problem of undesirable wave reflection at boundaries is well known. In
principle, it can be removed by a characteristic formulation of the boundary
conditions, as discussed in section 3 above. However, it is difficult in practice
to determine the appropriate boundary values of the exact characteristics of
the Euler equations. Giles [3] proposed alternative boundary conditions based
on a linearised set of governing equations, assuming that perturbations from a
uniform, steady reference flow are small near the boundaries. Giles derived the
following set of characteristic variables for the linearised equations:

J1 = −a2(ρ − ρref ) + (p − pref ) (10)

J2 = ρa(u − uref ) + (p − pref ) (11)

J3 = −ρa(u − uref ) + (p − pref ) (12)

The subscript ref denotes the reference flow near the boundaries, which can be
prescribed on the basis of knowledge of the exterior domain. The first charac-
teristic wave is associated with convection of entropy, and propagates at flow
velocity. The second and third characteristics are waves which propagate up-
stream and downstream relative to the local flow. At an inflow boundary, the
downstream-running characteristics J1 and J2 should be prescribed as zero and
the upstream-running characteristic J3 should be determined from the domain
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interior. Similarly, at the outflow boundary, J1 and J2 should be determined
from the interior, while the boundary condition is J3 = 0. By inverting the
system of equations (10–12), it is straightforward to express pressure, density,
and velocity as functions of the characteristic variables as shown below.

ρ − ρref =
1

a2
(−J1 +

1

2
J2 +

1

2
J3) (13)

u − uref =
1

2ρa
(J2 − J3) (14)

p − pref =
1

2
(J2 + J3) (15)

These equations are used to update ρ, u and p at the boundaries after the
characteristics have been determined. The reference values (about which the
governing equations are linearized) must be specified for all three variables at
both boundaries. This is not equivalent to prescription of ρ, u and p, since
perturbations from the reference flow are allowed. The boundary conditions are
imposed on J1, J2 and J3 rather than ρ, u and p. The implementation of this
analytical boundary condition in SPH is straightforward within the framework
described in section 4.

The one-dimensional steady-flow test case was repeated with these non-
reflecting boundary conditions. Results are shown in Fig. 3. Waves are at-
tenutated significantly on reflection, in comparison with the case shown in Fig.
2. By dimensionless time tai/L = 1.695, perturbation from the steady state has
decayed to less than 5% of its original value because waves have been transmit-
ted out through the boundaries.

6 APPLICATIONS

In this section, results are reported for flow simulations that make use of the
inflow and outflow boundary implementations. A quasi-one-dimensional nozzle
simulation is used to demonstrate subsonic and supersonic inflow and outflow.
This is followed by simulations of steady and unsteady two-dimensional flow
around a cylinder.

6.1 Quasi-one-dimensional nozzle flow

In these test cases, an inviscid ideal gas flows through a duct of non-uniform
cross-sectional area A(x), and all variables are assumed to be a function of x
only, with negligible y and z velocity components. Flow is governed by the
quasi-1D Euler equations

∂

∂t





ρA
ρuA

ρ(e + 1

2
u2)A



 +
∂

∂x





ρuA
ρu2A

ρu(e + 1

2
u2 + p/ρ)A



 + A
∂

∂x





0
p
0



 = 0 (16)

9



Figure 3: Pressure distribution at various times in a simulation of a 1D flow at
M = 0.1, with an initial perturbation in the pressure field. Non-reflecting inlet
and outlet boundary conditions are applied. Shaded bands denote the inflow
and outflow zones.
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where A = A(x) is the cross-sectional area of the duct. These equations can be
discretised using standard SPH methods. For steady isentropic flow, an exact
solution is given by

(

A

A∗

)2

=
1

M2

[

2

γ + 1

(

1 +
γ − 1

2
M2

)]

γ+1

γ−1

(17)

where M is Mach number and A∗ is the critical area (at which M = 1) [16].
The duct is a convergent-divergent nozzle with inlet area 2 (arbitrary units),

throat area 1, and outlet area 1.3. In this geometry, the outlet and inlet areas
are different, and the outlet and inlet flow conditions are different. This entirely
precludes the use of periodic boundaries, even as an approximation to inflow and
outflow boundaries. Inflow and outflow zones are used, as described in section
4. In the initial conditions, particles are distributed uniformly over the length
L of the domain at an initial spacing ∆xi/L = 0.01, with smoothing length
h = 4/3∆xi. Artificial viscosity is used with α = 1.5 and β = 2.5, and there is
no artificial repulsive force.

For the inlet with subsonic flow, total pressure p0 and total temperature
T0 are prescribed for all particles in the inflow zone, while static pressure p
is extrapolated from the domain interior. At the outlet, for subsonic flow,
static pressure is prescribed while energy and velocity are determined from the
conservation equations. Final steady-state results for this case are shown in Fig.
4. The SPH solution is in excellent agreement with the analytical solution, with
root mean square error less than 1% in pressure and Mach number.

In supersonic flow, no characteristics propagate upstream. Thus, at a super-
sonic inlet, three variables must be prescribed (total pressure p0, total temper-
ature T0 and static pressure p in this case). At a supersonic outlet, all variables
are determined in the outflow zone by solution of the discrete conservation
equations, with the neighbour deficiency for the most downstream particles ef-
fectively enforcing one-way propagation of information. Results are shown in
Fig. 5 for a nozzle flow with entirely supersonic flow from inlet to outlet. (This
is a purely theoretical scenario, since the decelerating flow would contain oblique
shocks in a physical nozzle. It is the quasi-1D analytical model, rather than the
numerical approximation, which fails to capture the physics completely.) Again,
there is very good agreement with the analytical result. Root mean square er-
rors are 3.2% and 0.8% for Mach number and pressure, respectively. These
simple but non-trivial test cases provide an effective preliminary validation of
the new approach to modelling inflow and outlfow boundaries in SPH.

6.2 Two-dimensional flow over a cylinder at ReD = 40

Two-dimensional flow over a cylinder is a classic fluid dynamics study, and
an important test for numerical methods. Lee et al. [17] simulated flow over a
square cylinder using SPH, with periodic boundaries upstream and downstream,
and a streamwise body force to overcome drag. This arrangement represents
the special case of a cylinder in an infinite array. Takeda et al. [18] used SPH
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Figure 4: Area, Mach number, and pressure ratio distributions in the quasi-1D
nozzle with subsonic inlet and subsonic outlet, computed with SPH and from
an exact analytical solution.
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Figure 5: Area, Mach number, and pressure ratio distributions in the quasi-1D
nozzle with supersonic inlet and supersonic outlet, computed with SPH and
from an exact analytical solution.
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Figure 6: Domain geometry for the model of two-dimensional flow around a
cylinder.

to model flow over a cylinder at Reynolds numbers from 6 to 55, but performed
a separate finite-difference simulation to provide boundary conditions for SPH.
For a general model of flow over a cylinder or any body immersed in a steady
flow, true inflow and outflow boundaries are required. To date there has been
no complete SPH simulation of this case.

The geometric definition of this problem is shown in Fig. 6. Flow is from
left to right as shown in the diagram, with periodic boundaries used at the top
and bottom. The solid cylinder is modelled using fixed particles placed in con-
centric circles. Approximately 10,000 fluid particles are used in the simulation,
initially distributed in concentric circles near the cylinder, and on a Cartesian
grid further away. The initial particle spacing ∆x is approximately (0.11)D and
the smoothing length is h = (0.22)D. The Mach number (based on inlet ref-
erence velocity and temperature) is 0.1. The fluid is modelled using the mixed
gradient and kernel correction of Bonet and Lok [6] for first-order consistency,
and Monaghan’s repulsive force term defined in Equation (8) [11] with ζ = 0.05
to suppress particle voids. Viscous stresses are modelled using Equation (7).

Two simulations were carried out for a Reynolds number ReD of 40 (based
on cylinder diameter and inlet velocity). At this value of ReD, flow is expected
to be laminar everywhere, with a pair of steady, symmetric counter-rotating
vortices in the wake. Unsteady vortex shedding occurs at Reynolds numbers
above about 45 [19]. In the first simulation, velocity and temperature were
simply prescribed at the inlet, and pressure was prescribed at the outlet. In
the second, the non-reflecting boundary conditions of Giles were applied at the
inlet and outlet. In both cases, the boundary conditions were imposed within
the framework of inflow and outflow zones as described in section 4. Results for
dimensionless pressure coefficient cp = (p(θ) − p∞) / 1

2
ρ∞u2

∞ over the cylinder
are shown in Figs. 7 and 8 for the prescribed and non-reflecting boundary condi-
tions, respectively (where θ is the polar angle about the centre of the cylinder).
(The freestream conditions p∞, ρ∞ and u∞ are taken as the inlet conditions for
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Figure 7: Pressure coefficient on the cylinder surface at ReD = 40, computed
using SPH with prescribed velocity, temperature and pressure boundary condi-
tions. Results show time-averages over 4000 time steps and over various rep-
resentative 50-step periods. Error bars show root-mean-square deviation about
the 4000-step average. A finite volume solution is shown for comparison.

the purpose of computing cp.) Results shown include time-averages over 4000
steps (excluding a start-up period), with error bars indicating the root-mean-
square deviation over this period. Also shown are time averages over typical
periods of 50 time steps. For the case with non-reflecting boundary conditions,
the pressure distribution is in reasonable agreement with a prediction from the
commerical finite volume software ANSYS-CFX [20], although there is a marked
discrepancy in the region of separated flow. Unsteadiness is greatly reduced by
the introduction of non-reflecting boundary conditions. The magnitude of fluc-
tuations in surface pressure (indicated by error bars) is reduced by a factor
ranging from 1.7 to 8. The greater unsteadiness in the case with prescribed
velocity, temperature and pressure boundary conditions is due to waves which
traverse the domain and are reflected at the inlet and outlet boundaries. These
waves occur in both simulations, but are heavily attenuated by the non-reflecting
boundary conditions.

Contour plots of velocity magnitude near the cylinder are shown in Fig. 9
for the finite volume and SPH simulations, respectively. Both results predict
a steady, symmetric flow separation, and the velocity distributions are in good
agreement.

6.3 Two-dimensional flow over a cylinder at ReD = 100

Flow over a cylinder at a higher Reynolds number of 100 was simulated using
the same SPH methods described above with non-reflecting boundary conditions
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using SPH with non-reflecting boundary conditions. Results show time-averages
over 4000 time steps and over various representative 50-step periods. Error bars
show root-mean-square deviation about the 4000-step average. A finite volume
solution is shown for comparison.
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Figure 9: Contour plots of speed, normalised to inlet velocity, in flow around a
cylinder at ReD = 40 from (a) an SPH solution with non-reflecting boundary
conditions, and (b) a finite volume solution.
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only. At this Reynolds number, an unsteady von Kármán street is expected in
the cylinder wake.

A particle spacing and smoothing length of approximately half the values
used for ReD = 40 were found necessary in this case because of the thinner
boundary and shear layers. Since this higher resolution is required only near the
cylinder and centreline of the domain, particles were distributed non-uniformly
in the transverse (y) direction. The use of a first-order consistency-corrected
SPH formulation makes this possible, significantly reducing error due to particle
non-uniformity [7]. The inflow boundary formulation used here automatically
preserves the non-uniform particle distribution through the run, since particles
are introduced in the inflow zone at the same transverse location where they
cross into the interior domain. The non-uniform particle distribution reduced
the computational cost by a factor of about 3 relative to a uniform distribution.

The SPH simulation correctly predicts the existence of vortex shedding at
this Reynolds number, as shown in Fig. 10. The non-uniform distribution of
particles is also visible in these visualisations. The SPH simulation predicts
a Strouhal number of 0.18, which is in reasonable agreement with the value of
0.165 measured consistently in various experiments [21]. It should be noted that
the simulated channel is narrow in comparison with classical studies of cylinder
flow, with width equal to 8 cylinder diameters, and this may have some influence
on the results.

7 DISCUSSION

In this paper, a novel framework has been presented for modelling inlet and
outlet boundaries in SPH. The method involves inflow and outflow zones out-
side the flow domain, in which appropriate parameters are prescribed and the
SPH equations are partially solved. This framework is flexible enough to allow
various analytical forms of inlet or outlet boundary condition to be imposed.
In particular, characteristic-based non-reflecting boundary conditions may be
applied. Accurate results have been obtained for one-dimensional and quasi-
one-dimensional test cases. In two dimensions, the inlet and outlet boundary
conditions were used to model flow over a cylinder at Reynolds numbers of 40
and 100, as a classic case of steady flow rate through a fixed spatial domain. Rea-
sonably accurate results were obtained for pressure distribution, velocity fields
and vortex shedding frequency. Qualitative differences between the wake struc-
tures at two Reynolds numbers were predicted correctly. The higher Reynolds
number case also demonstrated the capability of the method to deal with non-
uniform particle distributions and an unsteady, non-uniform outlet condition.
These are the first complete SPH simulations of flow over a cylinder achieved
without the assumption of streamwise periodicity. The results demonstrate the
method’s capability to model steady and quasi-steady non-enclosed flows, in-
cluding separated flow.

In principle, these boundary conditions may be extended to curved bound-
aries, non-uniform boundary conditions (e.g. a prescribed velocity profile), un-
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Figure 10: Flow around a cylinder at ReD = 100, from an SPH solution with
non-reflecting boundary conditions. (a) Instantaneous contour plot of speed.
(b) Instantaneous contour plot of x material (Lagrangian) coordinates. Particles
with similar colours had similar x coordinates at the beginning of the simulation.
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steady boundary conditions and fully incompressible flow. The only restriction
is that the flow near the boundary should be uni-directional, so that the one-
dimensional approximation remains valid for flow along streamlines. A non-
reflecting formulation would not be necessary or applicable for fully incom-
pressible flow, since information is not propagated by acoustic waves. However,
further invesitgation is required. Implementation for free-surface flow (an im-
portant application area of SPH) is less obvious, since the water depth at outflow
must be prescribed. Another possible application of the technique is to the cou-
pling of SPH to a mesh-based method. With boundary conditions of the type
presented here, fully Lagrangian modelling of flow through fixed domains is pos-
sible, and the scope of SPH is extended to a much broader range of engineering
fluid dynamics applications.
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