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Abstract. In SPARQL, conjunctive queries are expressed by using shared vari-
ables across sets of triple patterns, also called basic graph patterns. Based on this
characterization, basic graph patterns in a SPARQL query can be partitioned into
groups of acyclic patterns that share exactly one variable, or star-shaped groups.
We observe that the number of triples in a group is proportional to the number
of individuals that play the role of the subject or the object; however, depending
on the degree of participation of the subject individuals in the properties, a group
could be not much larger than a class or type to which the subject or object be-
longs. Thus, it may be significantly more efficient to independently evaluate each
of the groups, and then merge the resulting sets, than linearly joining all triples in
a basic graph pattern. Based on this observation, we have developed query opti-
mization and evaluation techniques on star-shaped groups. We have conducted an
empirical analysis on the benefits of the optimization and evaluation techniques
in several SPARQL query engines. We observe that our proposed techniques are
able to speed up query evaluation time for join queries with star-shaped patterns
by at least one order of magnitude.

1 Introduction

In the context of RDF documents and SPARQL [1] queries, variables in (a combina-
tion of) basic graph patterns may be interpreted as either subjects characterized by a
property, object values of a property, or properties that relate a subject and an object.
These basic graph patterns in a query can be partitioned and reordered into groups of
pattern combinations according to exactly one common variable, which we call star-
shaped groups; the combinations may be over subjects, objects or mixed subjects and
objects. For example, subject star-shaped groups of triple patterns around the same
variable, commonly occur in complex SPARQL queries, where such groups around the
same subject variable, typically describe a “class” of individuals to be queried: that is,
a subject star-shaped group may be viewed as all the combinations of object values of
the properties that characterize the individuals that belong to this “class”.4 Thus, the

4 We quote “class” to indicate that we are not talking about classes in the sense of OWL or
RDFS, but rather groups of individuals characterized by common properties.



number of triples in the group is proportional to the number of individuals in the sub-
ject; however, depending on the degree of participation of the subject individuals in the
properties, the group may be not much larger than this subject “class”. In the common
case where star-shaped groups denote instances of data such that the combined prop-
erties imply quasi functional dependencies, the group may be significantly smaller than
any of the participating properties taken on its own. Similar properties hold for object
and subject-object star-shaped groups. Therefore, it is often beneficial to evaluate such
groups jointly.

In this work, we have developed a query optimization technique that provides the
basis for an efficient evaluation of common SPARQL queries that can be rewritten as
combinations of small star-shaped groups. In order to identify an optimal plan for a
query, a randomized cost-based optimizer partitions the basic graph patterns that ap-
pear in the ’WHERE’ clause of a query into small-sized star-shaped groups, and also
explores different orderings within groups and between groups. We focus in this paper
on conjunctive queries, i.e., queries consisting of a single basic graph pattern (BGP) [1,
Section 5.1]. However, since BGPs are the basic building block for any other, more
complex patterns, such as OPTIONAL, UNION, FILTER, and GRAPH patterns, ob-
viously our method also proves valuable for efficiently evaluating subpatterns within
more complex queries. In addition, to efficiently evaluate SPARQL queries, we have
developed two different physical join operators for the SPARQL query language that
support the evaluation of combinations of such groups: we propose the njoin and the
gjoin operators. The njoin scans the triples of the first pattern, and loops on the second
pattern for matching triples. The gjoin evaluates star-shaped groups and matches their
results. We have implemented the gjoin operator in the Jena query engine, and have
empirically studied the performance of the optimized queries in several RDF query en-
gines: our own system OneQL[2], Jena [3], RDF-3X [4], Sesame [5] and GiaBATA [6].
We have observed that our techniques are able to speed up the query evaluation time
– especially for queries where common star-shaped patterns can be found – by several
orders of magnitude.

To summarize, the main contributions of this paper are the following:

– We define and have implemented different physical operators for combining pat-
terns: (1) a naive operator njoin, that for each triple that satisfies the first pattern,
loops on the second pattern for matching triples, and (2) a gjoin operator which
evaluates the star-shaped groups jointly, and matches their results.

– We define sampling techniques to estimate the result size and cost of star-shaped
group patterns, the size of each property, and the selectivity of their subjects and
objects, which help us to identify the most promising star-shaped groups.

– Based on the sampled values, we establish cost metrics that reflect the number
of RDF triples that need to be read in order to answer the query. Out cost model
extends the model presented in [2], to estimate the evaluation cost and cardinality
of the star-shaped group physical operator.

– We describe a randomized optimization strategy that identifies a cost-effective plan
(wrt. our metrics) and it is based on the Simulated Annealing algorithm. The al-
gorithm explores execution plans of any shape (bushy trees) in contrast with other
optimization algorithms that explore a smaller portion, e.g., left-linear plans only.



Bushy trees need to be explored, as query plans of any shape may be generated
when combining star-shaped groups.

– In our evaluation we provide an empirical analysis on the predictive capability of
our cost model, and the benefits of the proposed evaluation techniques on different
RDF query engines.

The remainder of the paper is structured as follows. We start with a motivating
example in the following section. Our query evaluation engine along with its underlying
cost model and the query optimization strategy are presented in section 3. An extensive
experimental study is reported in section 4, and section 5 summarizes the related work.
Finally, we conclude in section 6 with an outlook to future work.

2 Motivating Example

As a running example throughout this paper we consider an RDF dataset on US Congress
vote results, published as RDF at the http://www.govtrack.us website.5 This dataset reg-
isters individuals and property values related to the US bills voting process grouped
per year. E.g., for each of the 216 bills voted in 2004, it registers its title, date, voting
options and winners; each voter and vote are also registered (there are 100 voters for
each election). Table 1 reports the number of triples, and the number of different values
for the subject and the object of some of the properties in the 2004 dataset.

property # triples # subject values # object values
voter 21,600 21,600 100

winner 216 216 2
hasBallot 21,600 216 21,600

option 21,600 21,600 3
title 216 216 216

Table 1. Cardinality and number of values govtrack.us 2004

An example query posed against this dataset is All the bills and their titles where
’Nay’ was the winner, and at least one voter voted for the same option (Aye/Nay/NoVote)
as voter ’L000174’. There may be several equivalent (w.r.t. the set of answers) query
evaluation strategies or plans where we may apply regrouping or reordering of basic
graph patterns. Two equivalent SPARQL queries can be seen in Figures 1(a) and 1(b),
and their query plan trees are presented in Figures 2(a) and 2(b), respectively; we
denote our njoin and gjoin operators, which we will detail later, by onn join and ong join,
respectively. Intuitively, the gjoin operator always applies when two groups of more
than one triple pattern are joined, as opposed to joining a single triple with a group. The
tree in Figure 2(a) is left-linear, whereas the tree in Figure 2(b) is a bushy tree where
the patterns were partitioned into star-shaped groups.

5 http://www.govtrack.us/data/rdf/



PREFIX vote: <tag:govshare.info,2005:rdf/vote/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX people:<http://www.rdfabout.com/rdf/usgov/>
SELECT ?E ?T
FROM <http://example.org/votes>
WHERE

{?E vote:winner ’Nay’ .
?E dc:title ?T .
?E vote:hasBallot ?I .
?I vote:option ?X .
?J vote:option ?X .
?E vote:hasBallot ?J .
?J vote:voter ’people:L000174’.
FILTER (?I != ?J) }

(a) SPARQL Query without groupings

PREFIX vote: <tag:govshare.info,2005:rdf/vote/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX people:<http://www.rdfabout.com/rdf/usgov/>
SELECT ?E ?T
FROM <http://example.org/votes>
WHERE

{{{?E vote:winner Nay .
?E dc:title ?T} .
{?E vote:hasBallot ?I .
?I vote:option ?X}} .
{?J vote:voter people:L000174 .
?J vote:option ?X .
?E vote:hasBallot ?J}.
FILTER (?I != ?J)}

(b) SPARQL Query with groupings

Fig. 1. Two Equivalent Queries

In an RDF dataset, there is only asserted knowledge, so the evaluation cost is pro-
portional to the number of RDF triples that are read along query evaluation (i.e., the
total number of intermediate results).

Let us take a look at the evaluation of the patterns. In plan 2(a), patterns are evalu-
ated in a left linear fashion: for each triple in a pattern, we loop on the next pattern and
retrieve the matching triples; this procedure continues until all the patterns are evalu-
ated. Each sub-tree is annotated with its evaluation cost defined in terms of the number
of RDF triples that are produced during execution time; the total query evaluation cost
is 79,046,033 triples.

In plan 2(b), patterns were partitioned into three star-shaped groups. Similarly, each
sub-tree is annotated with its evaluation cost, and some of the sub-trees correspond to
the gjoin operator. The estimated cost is dramatically reduced to 34,140 triples; note
that the ordering within each group is also relevant, e.g., if the instantiated pattern {?J
vote:voter people:L000174} were the right-most pattern in the group instead of the left-
most one, the total number of sub-tree E intermediate results, would have been larger.
This example illustrates how the combination of appropriate partitioning in star-shaped
groups and join reordering may improve the efficiency of query evaluation. It is benefi-
cial to identify small-sized star-shaped groups and to avoid large-sized ones.

For instance, the small-sized group in sub-tree D, in Figure 2(b), reduces the num-
ber of voter options from 21,600 to 216 due to the voter instantiation {?J vote:voter
people:L000174}. On the other hand, avoiding large-sized star-shaped groups prevents
the explosion of the evaluation cost, e.g., the star-shaped group {?I vote:option ?X. ?J
vote:option ?X} should be not be considered since the join selectivity of the ‘option’
object values is low, and a large number of matchings will occur and be accounted as
intermediate answers. Note that in Figure 2(a), the cost of this plan explodes when the
two ‘option’ property patterns are joined in sequence; this sequential join is marked
with a dashed circle in Figure 2(a).
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(b) Bushy tree

Fig. 2. Query Execution Trees

3 Our Approach

In this section we define star-shaped groups and our proposed physical join operators.
Moreover, we will elaborate on a cost model that describes the evaluation cost of these
operators, and a cost-based query plan optimizer that is able to explore execution plans
that combine star-shaped groups.

3.1 Star-shaped Group-based Query Engine

Formally, a star-shaped group is defined as follows:

Definition 1 (?X∗-BGP).
Each triple pattern {?X p o } or {s p ?X } such that s ,?X, p ,?X, and o ,?X is a

Star-shaped basic graph pattern w.r.t. ?X, or ?X∗-BGP. If P and P′ are ?X∗-BGPs such
that var(P) ∩ var(P′) = {?X} then P ∪ P′ is an ?X∗-BGP.

We have developed two physical operators for the evaluation of SPARQL’s logical
Join operator, sometimes denoted AND in the literature [7]. The njoin scans the triples
of the first pattern, and loops on the second pattern for matching triples. The gjoin
independently evaluates the star-shaped groups, and matches their results. These opera-
tors are described using the terminology presented in [7] for the semantics of SPARQL
graph pattern expressions:

– A triple pattern (or a basic graph pattern, respectively) is an RDF triple (or a set
of RDF triples, resp.) where variables may occur in subject, predicate or object
position.

– Solutions of patterns are described in terms of mappings µ which are partial func-
tions from variables to RDF terms.



– The evaluation of a basic graph pattern P, [[P]]G is the set of all mappings µ where
dom(µ) is the set of variables occurring in P, such that µ(P) ⊆ G. Each mapping
corresponds to a valid pattern instantiation in graph G.

– Compatible mappings µ1, µ2 are those which coincide in the variables they share,
and denote matching pattern instantiations.

– If P is a pattern and µ is a mapping, then by µ |P we denote the mapping obtained
from restricting µ to the variables in P.

A detailed description of the operators is as follows:

– Nested-Loop Join onn join: Given two star-shaped group patterns R1 and R2, we ex-
tend each mapping µR1 ∈ [[R1]]G to µ′R1

⊇ µR1 such that µR2 = µ
′
R1
|R2 is in [[R2]]G.

I.e., µR1 and µR2 are compatible mappings.
– Group Join ong join: Given two star-shaped groups R1 and R2, each of them is inde-

pendently evaluated, and the results are combined to match the compatible map-
pings.

3.2 Star-shaped Group Cost Model

In this section we define the cost model used for query plan generation. First, we de-
scribe the sampling technique used by the star-shaped cost model to estimate costs
of intermediate results. Then, we present the application of this sampling technique
for gathering RDF statistics, and for estimating the cost and cardinality of star-shaped
groups. Finally, we define the formulas used for computing the cardinality, and the cost
of a SPARQL query plan.

Adaptive Sampling Techniques. Unlike traditional approaches [8], the use of adap-
tive sampling techniques for query size and cost estimation does not require to store full
summary statistics about the data. An additional advantage of this approach is that no
strong assumptions about data characteristics are made upfront, but rather these proper-
ties can be estimated dynamically anytime. In [9], an adaptive sampling algorithm for
estimating the result size of general queries is presented. It is applicable to any query
that can be partitioned into disjoint sets of answers. This technique assumes that there
is a population P of all the different valid instantiations of a predicate P, and that P is
divided into n partitions according to the instantiations of one or more arguments of P.
Each element in P is related to its evaluation cost and cardinality, and the population P
is characterized by the statistics mean and variance of these two parameters.

The objective of the sampling is to identify a sample of the population P, called
EP, such that the mean and variance of the cardinality (resp., evaluation cost) of EP are
valid to within a predetermined accuracy and confidence level.

To estimate the mean of the cardinality (resp., cost) of EP, say Y , within Y
d with

probability p, where 0 ≤ p < 1 and d > 0, and α = d×(d+1)

(1−
√

p)
, the sampling method

assumes an urn model.
The urn has n balls from which m samplings are repeatedly taken, until the sum z

of the cardinalities (resp., costs) of the samples is greater than α × ( S
Y ). The estimated

mean of the cardinality (resp., cost) is: Y = z
m



The values d and 1
(1−
√

p)
are associated with the relative error and the confidence

level, and S and Y represent the cardinality (resp., cost) variance and mean of P. Since
statistics of P are unknown, the upper bound α × S

Y is replaced by α × b(n).
To approximate b(n) for cost and cardinality estimates, k samples are randomly

evaluated and the maximum value is taken among them:
b(n) = maxk

i=1(card(Pi)) (resp. b(n) = maxk
i=1(cost(Pi)), where 1 ≤ k ≤ n

Cardinality and Cost of Query plans The cost of query plans and sub-plans is either
computed or estimated according to their shape as follows:

– The adaptive sampling method is used to estimate the size and cost of star-shaped
groups. The sampling process for groups is simple and gives accurate estimates: the
population for the cost and cardinality estimates is comprised of the set of mappings
µ in the evaluation of the first pattern in the group. We sample on this population,
and for each sampled µ, we evaluate the group and compute its cardinality (number
of answers) and the evaluation cost. The samples are averaged in order to compute
the final values for cost and cardinality.

– The cost of plans which are not star-shaped is computed according to cost formulas
similar to the ones used in relational databases [8, 10].

3.3 Star-shaped Group Query Optimizer

The star-shaped group optimizer is implemented as a Simulated Annealing random-
ized algorithm which performs random walks over the search space of bushy query
execution plans. Random walks are performed in stages, where each stage consists of
an initial plan generation step followed by one or more plan transformation steps. An
equilibrium condition or a number of iterations determines the number of transforma-
tion steps. At the beginning of each stage, a query execution plan is randomly created
in the plan generation step. Then, successive plan transformations are applied to the
query execution plan in order to obtain new plans. The probability of transforming a
current plan p into a new plan p′ is specified by an acceptance probability function
P(p, p′,T ) that depends on a global time-varying parameter T called the temperature;
it reflects the number of stages to be executed. The function P may be nonzero when
cost(p′) > cost(p), meaning that the optimizer can produce a new plan even when it
is worse than the current one, i.e., it has a higher cost. This feature prevents the op-
timizer from becoming stuck in a local minimum. Temperature T is decreased during
each stage and the optimizer concludes when T = 0. Transformations applied to the
plan during the random walks correspond to the SPARQL axioms of the physical op-
erators implemented by the query and reasoning engine. The transformation rules that
implement the axioms that define the onn join and ong join operators are as follows:

1. Symmetry:
– R1 onn join R2 ≡ R2 onn join R1

– R1 ong join R2 ≡ R2 ong join R1

2. Associativity:



– (R1 onn join R2) onn join R3 ≡ R1 onn join (R2 onn join R3)
– (R1 ong join R2) ong join R3 ≡ R1 ong join (R2 ong join R3)

3. Distributivity (Linear to Bushy)
– (R1 onn join R2) onn join R3 ≡ (R1 onn join R3) ong join (R2 onn join R3)

4. Grouping
– (R1 onn join R2) onn join (R3 onn join R4) ≡ (R1 onn join R2) ong join (R3 onn join R4)

5. Fold into a star-shaped group: P1 and P2 are ?X∗-BGPs such that var(P1)∩var(P2) =
{?X}, then:

– P1 onn join P2 ⇒ (P1 onn join P2)
6. Unfold a star-shaped group: P1 and P2 are ?X∗-BGPs such that var(P1)∩var(P2) =
{?X}, then:

– (P1 onn join P2)⇒ P1 onn join P2

For each iteration in the inner loop of the optimization algorithm, a transforma-
tion rule is applied with a random probability. We have assigned a probability value to
each transformation rule. To illustrate this, in the running example from Figure 2 the
following rules have been applied to transform the left linear plan into the bushy plan:

1. Associativity
((P1 onn join P2) onn join P3) onn join P4 ≡ (P1 onn join P2) onn join (P3 onn join P4)

2. Grouping
(P1 onn join P2) onn join (P3 onn join P4) ≡ (P1 onn join P2) ong join (P3 onn join P4)

4 Related Work

In the context of the Semantic Web, several query engines have been developed to
access RDF documents efficiently [3, 4, 6, 11–14]. Jena [3] provides a programmatic
environment for SPARQL, and it includes the ARQ query engine and indices which
provide an efficient access to large datasets. The ARQ-Optimizer is a system that im-
plements heuristics for selectivity-based Basic Graph Pattern optimization, proposed
by Stocker et al. [15]. These heuristics range from simple triple pattern variable count-
ing to more sophisticated selectivity estimation techniques; the optimization process
is based on a greedy optimization algorithm which may explore a reduced portion of
the space of possible plans, i.e., only left linear plans. Hence, query plans generated
by the ARQ-Optimizer can sometimes be far from the optimal plans. The Jena Tuple
Database or TDB [13] is a persistent graph storage layer for Jena. TDB works with
the Jena SPARQL query engine (ARQ) to support SPARQL together with a number of
extensions (e.g., property functions, aggregates, arbitrary length property paths).

Sesame [14] is an open source Java framework for storing and querying RDF data.
It supports both SPARQL and SeRQL queries which are translated to Prolog; the join
operator is implemented as sideways-passing of variable bindings, which is similar to
our Nested Loop Join (njoin) operator.

RDF-3X [4] focuses on an index system, and its optimization techniques were de-
veloped to explore the space of plans that benefit from these index structures. The RDF-
3X query optimizer implements a dynamic programming-based algorithm for plan enu-
meration, which imposes restrictions on the size of queries that can be optimized and



evaluated. Indeed, in certain cases, these index-based plans could coincide with our op-
timized plans; however, the RDF-3X optimization strategies are not tailored to identify
any type of bushy plans or to scale up to queries with at least one Cartesian product.

GiaBATA [6], a SPARQL engine built on top of the dlvhex reasoning engine for
HEX-programs, and the DLVDB [16] ASP solver with persistent storage. DLVDB is
an extension of DLV which provides interfaces with external databases, takes advan-
tage of the optimization techniques implemented in the current DBMSs for improving
reasoning efficiency. Weiss et al. [17] propose a main memory indexing technique that
uses the triple nature of RDF as an asset. Two other approaches [18, 19] define two sec-
ondary memory index-based representations and evaluation techniques for RDF-based
queries. Several different RDF store schemas have been proposed [20–22] to efficiently
implement an RDF management systems on top of a relational database system. These
approaches empirically show that a physical implementation of vertically partitioned
RDF tables may outperform the traditional physical schema of RDF tables. Similarly to
some of the existing state-of-the-art RDF systems, the optimization techniques are not
tailored to identify and evaluate small-sized star-shaped groups.

Finally, we have implemented the star-shaped based optimization and evaluation
techniques in our own system, OneQL [10], and we have empirically shown the benefits
of these techniques in queries against medium-size datasets. However, because OneQL
is implemented in Prolog, it is not able to scale up to very large datasets. To overcome
this limitation, we have implemented the star-shaped operators in several of the above-
mentioned state-of-the-art RDF engines.

5 Experimental Results

We conducted an experimental study to empirically analyze the effectiveness of the
proposed optimization and evaluation techniques in our own and several existing RDF
engines. We report on the evaluation time performance of bushy plans comprised of
star-shaped groups and identified by our proposed query optimizer. We compare the
performance of the RDF query engines OneQL, Sesame, DLVDB, Jena TDB, and the
extensions of Jena and RDF-3X that implement the gjoin operator, i.e., the ong join.

Dataset and Query Benchmark: we use the real-world dataset on US Congress vote
results of the 2004 bills voting process described in Table 1; the total size is 3.613
MB and 67,392 triples. We considered two sets of queries; benchmark one is com-
prised of 17 queries which are described in Figure 3(a) in terms of the number of
patterns in the WHERE clause and the answer size; all the queries have at least one
pattern whose object is instantiated with a constant. Benchmark two is a set of 120
queries which are composed of between 1 and 7 gjoin(s) among patterns of very
small size. We also use the real-world ontology YAGO [23];6 the total size of the
dataset is 4GB and 44 millions of triples. We consider a benchmark of 10 queries
which are comprised of between 17 and 25 basic patterns; for all these queries the
answer is empty, except q6 that produces 551 triples. These three benchmarks are
published in http:www.ldc.usb.ve/˜mvidal/OneQL/datasets.

6 Ontology available for download at http://www.mpi-inf.mpg.de/yago-naga/yago/



Evaluation Metrics: we report on runtime performance, which corresponds to the user
time produced by the time command of the Unix operation system. The experiments
on dataset one were evaluated on a Solaris machine with a Sparcv9 1281 MHz pro-
cessor and 16GB RAM; experiments on the dataset Yago and the RDF-3X were ex-
ecuted on a Linux Ubuntu machine with an Intel Pentium Core2 Duo 3.0 GHz and
8GB RAM. Jena extensions were developed in Java (64-bit JDK version 1.5.0 12);
OneQL is implemented in SWI-Prolog (Multi-threaded, 64 bits, Version 5.6.54);
finally, RDF-3X 0.3.3 is implemented in gcc/g++ v4.3.3.

Query Engine Implementations: the star-shaped group randomized query optimizer
implements a Simulated Annealing algorithm that was run for twenty iterations
and an initial temperature of 700; transformation rules were applied according to
the probability distribution reported in Table 3(b).
To implement the gjoin operator in Jena 2.3, we modified the method QueryIterator
stream in the class com.hp.hpl.jena.sparql.engine.main.OpCompiler. The Jena
GJoin performs as follows: first, two objects of the QueryIteratorCaching class
are created by replicating the input of the method stream; the outer and inner
star-shaped groups are independently evaluated by calling the compileOp method
with these QueryIteratorCaching objects. Each result set is stored in a different
QueryIterator object, and the method QueryIterJoin is called to compute the
join matches between the two sets. A new QueryIterator object is created to store
the matches and is returned as the output of the method. We call this version of
Jena, GJena.
Additionally, we have extended RDF-3X 0.3.3 to respect star-shaped plans pro-
duced by our query optimizer; njoin and gjoin are implemented as RDF-3X Hash
Joins, while njoins in star-shaped groups correspond to RDF-3X Merge Joins; we
call this version GRDF-3X. Finally, the njoin and gjoin operators were also imple-
mented in DVLDB; for each star-shaped group in a plan, we generate a relational
view which only projects the join variables of the star-shaped group.

query #patterns answer size
q1 4 3
q2 3 14,033
q3 7 3,908
q4 4 0
q5 4 0
q6 4 47
q7 3 6,600
q8 3 963
q9 7 13,177

q10 9 6,003
q11 9 150
q12 9 0
q13 3 100
q14 3 100
q15 3 1
q16 4 0
(a) Benchmark One

Transformation Rule Probability
Symmetry 0.9
Associativity 0.9
Linear To Bushy 0.9
Grouping (Folding into a star-shaped group) 0.7
Grouping (Unfold a star-shaped group) 0.3

(b) Transformation Rules Distribution

Fig. 3. Experiment Configuration Set-Up



5.1 Effectiveness of the Star-shaped Group-Based Optimization Techniques

We study the effectiveness of the star-shaped group-based optimization techniques by
empirically analyzing the quality of the optimized plans w.r.t. the rest of the plans of
the corresponding queries, and the runtime performance of the optimized plans.

To analyze the quality of the optimized plans, we generated all the plans of q13,
q14, q15, and q16 in Figure 3(a), and computed the percentile in which the optimal
plan falls. This optimal plan was identified by the star-shaped group randomized op-
timizer, and all the plans were run on the version of Jena that implements the gjoin
operator. Queries q13, q14, q15, and q16 fall in the 83th, 26th, 92th, and 99th per-
centiles, respectively. These results suggest that the optimizer is able to traverse the
space of star-shaped groups and identify those that minimize the evaluation cost.

Table 2 compares the runtime cost of the non-optimized versus optimized versions
of the first nine queries of benchmark one in the engines: DLVDB, Sesame, and Jena
TDB (all versions).

Query Jena TDB Fixed Jena TDB Stats Jena TDB None Sesame DLVDB
q1 0m6.952s 0m7.149s 0m6.861s 0m0.34s 0m0.37s
q1o 0m4.072s 0m4.320s 0m4.048s 0m0.03s 0m0.34s
q2 0m29.106s 0m29.443s 0m28.553s 0m1.30s 0m1.23s
q2o 0m28.404s 0m31.121s 0m29.308s 0m1.38s 0m1.16s
q3 129m56.301s 150m7.661s 133m11.581s Timeout(100s) 14m53.05s
q3o 0m19.945s 0m20.816s 0m20.615s 0m0.56s 0m10.614s
q4 0m32.681s 0m32.364s 0m31.928s 0m2.45s 45m47.620s
q4o 2m43.325s 2m33.943s 2m37.936s 0m52.18s 0m9.189s
q5 0m26.085s 0m26.095s 0m26.187s 0m1.71s 33m1.786s
q5o 0m4.114s 0m4.097s 0m3.902s 0m1.06s 22m14.712s
q6 0m7.958s 0m7.808s 0m7.691s 0m0.26s 0m0.745s
q6o 0m4.939s 0m4.951s 0m4.772s 0m0.02s 0m0.712s
q7 0m20.486s 0m20.736s 0m20.342s 0m1.01s 0m0.761s
q7o 0m20.376s 0m20.381s 0m19.733s 0m0.56s 0m0.699s
q8 0m12.802s 0m12.758s 0m13.033s 0m0.28s 0m0.339s
q8o 0m0.402s 0m11.181s 0m11.677s 0m0.09s 0m0.314s
q9 337m12.276s 333m54.96s 350m14.346s Timeout (100s) 1191m55.86s
q9o 0m12.238s 0m11.689s 0m11.660s 0m0.58s 415m43.86s

Table 2. Evaluation Time of Non-Optimized versus Optimized Queries (seconds)

We can observe that in general, the optimization techniques are able to speed up
the evaluation time in almost all the SPARQL query engines. Particularly, in query
q3, the improvement was produced by the reordering of the patterns, while in query
q9, a combination of reordering and star-shaped groups was generated. However, the
randomized optimizer was not able to produce the star-shaped groups which would
have improved the evaluation time of q4.



Additionally, we study the effectiveness of the star-shaped group-based optimiza-
tion techniques in different Jena engines. We ran queries q3, q9, q11, q12, q13, q14,
q15, and q16 on Jena 2.3 and their respective optimized plans in GJena, and compare
their evaluation times (seconds-logarithmic scale) in Figure 4(a). All these plans were
composed of small-sized star-shaped groups. We could observe that the evaluation time
of the optimized queries was at most 50% of the evaluation time of Jena’s native query
processing, and in some cases, the time was reduced by up to two orders of magni-
tude. These results indicate that by identifying groups our optimizer is able to generate
significantly better plans for star-shaped queries compared to the “flat” join-reordering
techniques in Jena.

Furthermore, we studied the benefits of the star-shaped based optimization and
evaluation techniques by empirically analyzing the quality of star-shaped optimized
plans w.r.t. the plans optimized by the RDF-3X query optimizer. Nine queries of bench-
mark one were optimized by OneQL and RDF-3X, and the generated plans were run in
OneQL. Each RDF-3X optimized plan was run using the gjoin to evaluate the groups in
the bushy plans, and using the njoin to evaluate joins inside the star-shaped groups. Fig-
ure 4(b) reports the evaluation time (seconds-logarithmic scale) of these combinations
of queries. We can observe that the evaluation time of the star-shaped and RDF-3X opti-
mized plans are competitive, except for queries q1 and q6 where our optimizer was able
to identify plans where all the triples are instantiated, and the most selective ones are
evaluated first. These results indicate that the star-shaped based optimization and eval-
uation techniques may be used in conjunction with the state-of-the-art techniques to
provide more efficient query engines; they have encouraged us to develop our physical
operators in existing RDF engines like Jena and RDF-3X.
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Fig. 4. Effectiveness of the Star-shaped Optimizer-Time (seconds-logarithmic scale)

Finally, we studied the behavior of the star-shaped plans in RDF-3X against large
datasets. For each query of benchmark three on YAGO, we computed the RDF-3X



optimal plan and the star-shaped plan produced by OneQL. We also built the optimal
star-shaped group plan of the query by hand; each optimal plan was comprised of be-
tween two and five star-shaped groups free of Cartesian products. RDF-3X optimized
plans were run in RDF-3X, while the other two versions were executed in GRDF-3X.
Figure 5(a) reports on the evaluation time (seconds-logarithmic scale) of these queries;
optimization time is not considered in any case. We can observe that the star-shaped
plans produced by our optimizer can reduce evaluation time by up to three orders of
magnitude, and in many cases their evaluation time is close to the optimal cost. We
also ran this experiment in Jena; original queries were run in Jena 2.3 and the other two
versions were executed in GJena. We observe a similar trend in the evaluation time.
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Fig. 5. Performance of Star-shaped Groups-Time (seconds-logarithmic scale)

5.2 Performance of the Star-shaped Group Physical Operators

We have conducted an empirical analysis on the benefits of the evaluation techniques
implemented on Jena, and we have executed the one hundred and twenty queries of the
benchmark two on govtrack.us. We compared the benefits of using our gjoin physical
implementation and the njoin implementation provided by Jena versions 2.3, Jena 2.7
and Jena TDB. We could observe that our gjoin implementation was able to speed up
the evaluation time by up to three orders of magnitude. Figure 5(b) reports the average
time (seconds-logarithmic scale) consumed by the Jena query engine to evaluate the
different queries.

6 Conclusions and Future Work

We have defined optimization and evaluation techniques that provide the basics for an
efficient evaluation of SPARQL queries. The assumptions of the uniformity of values of



subjects and objects in a property, and of independence between properties, may lead to
imprecise estimates in real-world problems. Thus, in the future we plan to enhance the
star-shaped cost model with Bayesian inference capabilities so as to consider the lack
of uniformity of the values in the RDF documents, and correlations between patterns
in the SPARQL queries. Furthermore, we plan to conduct an experimental comparison
of the performance of our optimizer and the RDF-3X optimizer [24]; also, a detailed
experimental study of column-store approaches[22] such as Virtuoso 7 or MonetDB8 is
on our agenda.
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