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ABSTRACT
Due to the rapid development of the Web, applications based
on the P2P paradigm gain more and more interest. Recently,
such systems start to evolve to adopt standard database
functionalities in terms of complex query processing sup-
port. This goes far beyond simple key lookups, as provided
by standard DHT systems, which makes estimating the com-
pleteness of query answers a crucial challenge. In this pa-
per, we discuss the semantics of completeness for complex
queries in P2P database systems and propose methods based
on the notion of routing graphs for estimating the number
of expected query answers. Further, we discuss probabilistic
guarantees for the estimated values and evaluate the pro-
posed methods through an implemented system.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Databases; H.3.3
[Information Search and Retrieval]: Search process

General Terms
Algorithms, Management, Performance

1. INTRODUCTION
Many new applications on the Web are based on the idea

of collecting and combining large public data sets and ser-
vices. In such public data management applications, the in-
formation, its structure and its semantics in many cases are
the result of the collaborative effort of the participants. Ex-
amples of such applications are social networks, e.g., friend-
of-a-friend networks, distributed recommender systems, dis-
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tributed directory and index services, and sharing of sensor
data. These applications typically require the indexing and
management of data distributed over a large number of inde-
pendent data stores, which is a typical scenario targeted by
overlay networks. The most efficient family of overlay net-
works, distributed hash tables (DHT), so far have only been
applicable to a certain degree in these scenarios, as support
for managing and querying structured data in DHTs still is
limited. P2P data management is inherently open world:
While processing a query, peers can fail, leave or join the
network, or simply send no or a delayed answer [5]. Though
this can be mitigated by replication and delay-tolerant query
techniques, there is no guarantee that all answers which po-
tentially exist can be returned.

Thus, we argue that estimating the completeness of query
answers is a key aspect of reliable query processing in P2P
databases. Often, an approximated, but prompt estimation
is satisfying for the user. We achieve this by estimating
the number of query answers without explicitly analyzing
the actual content of each answer. Note that we are not
trying to guarantee completeness, neither we want to im-
prove the functionality of the underlying DHT. Instead we
only get what is available at query time (“in situ querying”)
but are able to assess the completeness of this result. Fur-
thermore, we aim at an incremental and online refinement
of the estimation. The main contribution of our work is
the development of lightweight techniques for providing re-
liable information about the result completeness of complex
database-like queries in a dynamic and unreliable P2P envi-
ronment. This leverages modern Web applications without
the need for precomputed data summaries or detailed global
information.

2. COMPLETENESS IN P2P SYSTEMS
The notion of completeness has been discussed in the lit-

erature mainly in the context of data quality, e.g., in [10, 12]
where completeness is typically understood as the ratio of
answer set size to the total amount of known data. However,
this definition does not apply in our context as it requires
the knowledge of the total amount of data in the system
and relies on the closed world assumption. To come to a
meaningful definition which is applicable in our context we
have to distinguish between data availability and complete-
ness of query answering. We introduce the following refined
definitions.
Data availability denotes the classical notion of complete-
ness, i.e., what amount of data w.r.t. the real world is
stored in a system. Availability can be seen (more or less)
as a static aspect if we assume that good replication tech-
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niques are used to deal with churn (peer failures or peers
joining/leaving) [2].
Completeness of query answers, in contrast, denotes the
ratio of the amount of data of the answer A to a query Q and
the amount of answers A we would get if all peers partici-

pating at query time t would respond: C(Q)[t] = |A(Q)[t]|
|A(Q)[t]|

.

Note, that this also holds true for any sub-query of Q, i.e.,
for each intermediate operator the completeness of its result
can be estimated.

Our notion of completeness deals with the dynamic as-
pects inherent in P2P systems and addresses the problem of
churn during query processing. Note, that replication helps
to solve the problem of “guaranteeing” that data is avail-
able over time but may not help if peers which are expected
to process portions of a certain query fail or leave during
processing [2].

Figure 1 shows this problem in a real-world situation from
a Planet-Lab experiment: it shows the fraction of received
results and expected results versus time for three queries
each initiated 15 times.

q30.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35

fr
a
c
ti
o
n

o
f
re

su
lt

reply nr.

q1
q2

0

Figure 1: Result quality
in Planet-Lab

Depending on the com-
plexity of the query, the
average result size is sig-
nificantly below the ex-
pected size. This is
normal in such systems,
but cannot be recognized
nor handled accordingly
without an accurate com-
pleteness estimation.

For estimating com-
pleteness of query an-

swers in P2P systems we can basically distinguish two main
approaches: estimating (1) on data level and (2) on peer
level. The data level approach is based on data summaries
representing the distribution of data of all or only a subset
of peers. Using this information, the received answers can
be compared to the expected answers to estimate the ratio
between these two sets. In contrast, the peer level approach
does not count the received data items in the answer but the
responding peers. Based on this and on information about
the structure of the DHT, the numbers of the responding
peers and the expected number of responding peers are com-
pared. The underlying assumption is that data is balanced
among the peers and that a linear correlation between the
number of failed peers and the resulting miss of data from
the expected answers exists. This assumption holds in DHTs
providing load balancing features such as P-Grid [1]. For
peer level estimation the above definition of completeness

has to be modified accordingly: C(Q)[t] = |P(Q)[t]|
|P(Q)[t]|

where P
and P denote the set of all peers responding to query Q and
the set of expected peers responding to Q resp.

In this paper, we focus on this peer level approach for
the following reason: because there is no need to maintain
summary information about data beside the routing infor-
mation which is needed anyway, the peer level approach is
much cheaper and better suited for large-scale and dynamic
networks.

3. RELATED WORK
Existing works on completeness estimation exists both in

relational and distributed database systems, e.g., [10]. Most
of these works apply completeness estimation from a differ-

ent point of view than we do. The aimed application scenario
is usually located in the area of information integration and
focuses on data quality. We focus on completeness as the
fraction of received results and expected results.

A recent system dealing with the problem of complete-
ness estimation in structured overlays is Seaweed [11], which
facilitates to estimate query completeness directly on data
level. For this, Seaweed uses data summaries representing
the data distribution of neighboring peers, which are reg-
ularly updated using a heartbeat mechanism. We assume
a wider variety of different query types and query process-
ing strategies, exceeding the idea of broadcast and spanning
trees. Our method for completeness estimation is designed
specifically to be generic in order to support other modern
processing strategies, such as similarity and skyline search.
The idea behind Seaweed is to provide delay-aware querying,
which means data summaries and availability models of cur-
rently unavailable nodes are used in order to predict query
completeness and response times. In contrast to this, we use
the DHT to handle unavailable and new nodes, usually by
managing replicated data objects and corresponding rout-
ing techniques. We primarily use completeness estimation
to measure the currently received portion of a query result
in the context of slow peers. Unavailable peer data is han-
dled in a best-effort manner, where completeness estimation
helps to rate the significance of partial results. The idea of
regularly maintained data summaries is a very interesting
possibility to extend our approach.

Concerning P2P query processing, the most related work
is PIER [6]. The authors propose a similar database-like
style of query processing as we do (see Section 4). How-
ever, until now, PIER provides no mechanisms for estimat-
ing query completeness, but the authors mention this as fu-
ture work. A couple of distributed triple stores, e.g., [3], are
based on a similar data model, preferably used to manage
and query RDF data. Despite that they provide sophisti-
cated query processing capabilities as well, query processing
is based on a rather different approach and completeness
estimation is not supported.

4. BASIC QUERY PROCESSING
We implemented our approach for estimating query com-

pleteness in the UniStore system [8]. This section summa-
rizes the fundamentals of query processing in this system re-
quired to understand the subsequent sections which present
our approach. We used the implementation in UniStore as
a proof-of-concept, but would like to point out that our ap-
proach is generally applicable to DHT-based query systems.

The philosophy of UniStore is similar to that of PIER [6].
Both systems aim at supporting structured queries on struc-
tured data from multiple users, managed in a structured
overlay, i.e., a DHT. overlay). Queries are transformed into
according query plans and processed relying only on routing
functionality provided by the DHT. In contrast to PIER,
UniStore targets very heterogeneous environments, typical
for the Web. UniStore uses a triple-based storage model,
where each triple (o, a, v) includes a (system-generated) ob-
ject ID o (OID for short), an attribute name a (schema level)
and a value v for this attribute (instance level). The ben-
efits of this storage model are its flexibility and it is self-
descriptive and easily extensible. All triples are indexed
multiple times in the DHT to support various functionali-
ties: For instance, we build an index on the OIDs to support
efficient tuple reconstruction, an index on the concatena-
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Operator Description
ξA extracts all tuples with attribute A
ωB materializes attribute B for each input tu-

ple, if exists (join on OID)
./A=B equal join on A = B (∼: similarity join)
α aggregation operator
opRQ physical operator op based on contacting

all responsible peers using a range query
(DOR)

opParOID physical operator op based on parallel di-
rect lookups for input OIDs (FNR)

Table 1: Used operators

tion of a and v for prefix and range-queries over attributes,
a qgram index to support string similarity, etc. UniStore
also supports special operators which are helpful in het-
erogeneous environments such as similarity queries, ranking
queries, skyline queries, etc.

UniStore’s query language supports the triple model very
similar to RDF query languages. For processing queries, the
query engine chooses among different processing strategies
by applying different access paths (different indexes build on
top of the DHT) Multiple instances of a query plan (called
sub-plans) are shipped where relevant data is expected to
be (using the DHT’s hash functions). At these peers the
plans are processed, physical operators are successively re-
placed by (partial) result data and the plan is forwarded
again. Finally, a reply (which can be empty) is sent to the
query initiator for every finished sub-plan (i.e., the last plan
operator has been processed). Thus, in order to estimate
completeness on peer level, we have to determine the num-
ber of plans generated during the processing of one query.

We use a graph-based notation for representing query plans,
where each node represents a plan operator symbolized by
a Greek letter. We will use the following abbreviations and
symbols: DOR (Dynamic Overlay Routing), FNR (Fixed
Number Routing), R (estimated number of final replies), Ŗ
(actual number of final replies), r (number of currently re-
ceived replies), and L (maximal routing level of a routing
graph). Table 1 lists the operators used in the following
sections.

Query plans and operators used in this work are chosen
in order to illustrate the proposed approach as much intu-
itive as possible, and to capture the three different general
processing strategies proposed in related works: sequential
(peers to finish an operator are contacted in sequence), intra-
operator parallel (all peers needed to finish one operator are
contacted in parallel), and inter-operator parallel (allows for
processing branches in parallel, e.g., both input sides of a
join).

Query processing in P2P networks depends on the under-
lying topographic structure and the routing principles of the
concrete system. For equality queries, the query originator
only has to expect no or one reply from the peer holding
matching data. For more complex query types, e.g., range
queries and similarity queries, the query initiator is usu-
ally unaware of the number of peers involved in resolving its
query and will receive an a priori unknown number of query
replies. It is therefore not possible to determine when the
result set is final.

5. APPROACH
This section provides a general view on the proposed scheme

for completeness estimation using a small example. In [7] we
present a more high-level description.

5.1 Routing Methods
We observed that the different processing strategies can

be classified by only two relevant routing methods. The
crucial difference is whether a peer starting a routing knows
about how many peers will be contacted (i.e., the out-degree
of the corresponding routing point is known a priori) or not.
Following, we distinguish:

1. Dynamic Overlay Routing (DOR): The out-degree is
not known a priori. Usually, this is done by address-
ing a certain key space and let the overlay decide how
to forward the separate plans to all peers in this key
space. In most cases, this means that the routing of
plans is independent of already determined data. We
apply this concept by issuing range queries in order to
extract or materialize certain attributes. The number
of peers in a queried range is not known, though the
range itself is.

2. Fixed Number Routing (FNR): This class of routing
methods covers all processing strategies where the peer
starting a routing knows the number of generated sub-
plans. In most cases, the routing of plans is dependent
of intermediate input data. As an example, imagine a
nested-loop like processing of a join using an appropri-
ate attribute-value index.

In the following, we will base our explanations on these
two classes of routing methods, because the processing strate-
gies implemented in our system perfectly match them. Spe-
cial cases, like a mixture of both approaches (e.g., issuing a
fixed number of range queries depending on the input data)
or simplified routing methods (e.g., if the number of peers
contacted in one processing step is already known at query
planning time) integrate easily in the proposed framework.
For example, an operator processed sequentially corresponds
to an FNR with a fixed out-degree of 1 at each routing point.

5.2 General Idea
The idea is to build a routing graph that represents the

peers and connections a query travels during processing.
Each node in the graph, a routing point, represents one peer
involved in query processing. Actually, the graph is a tree.
The number of leafs in the tree is Ŗ, the number of replies we
need to estimate. Each operator is processed on one routing
level, which corresponds to the according level in the routing
graph. A peer may represent multiple vertices of a routing
graph because it may be contacted several times for process-
ing different parts of q. As a consequence, the query routing
graph is a topology overlaid on the topology of the overlay
(ring, tree, etc.). The graph also differs from its query plan q
as the processing of one operator may span multiple routing
points and at one routing point multiple operators may be
processed. The latter is true when multiple operators can
be processed locally on one peer without routing.

ξRQ
A

ωParOID
B

ωRQ
C

routing level:0

. . . 1

. . . . . . 2

. . . . . . . . . 3

Figure 2: Example query

Imagine the query plan in Figure 2. ξRQ
A extracts all

data items for attribute A using a range query to contact all
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peers responsible for a part of A. Thus, first routing method
is DOR. ωParOID

B and ωRQ
C materialize attributes B and C

as additional information for each input data item. For
any reasons, e.g., cost-based decisions, ωParOID

B uses direct
lookups for candidate items’ IDs and ωRQ

C is range-based
again. This means, second routing method is FNR, third is
DOR. If the query would contain a select filter on A or B,
this would be processed at the peers contacted for extract-
ing/materializing A/B. Thus, the routing graph would look
the same.

At time t the following knowledge is available at the query
initiator: the ranges rA and rC of attributes A and C, subsets
KA and KC of all paths from peers responsible for a part
of rA and rC, a subset D1 of all peers on level 1 with their
fanout d, |D1| = |KA|. Naturally, we assume t ≥ t0, where
t0 is the time of the first reply. Before t0, completeness
is always 0. From rA and KA we can estimate a minimal
number p1 of peers on level 1, as shown in [9]. Thus, the
following holds:

p2 =
X

d∈D1

d + (p1 − |D1|) .

This corresponds to the minimal number of replies to be
expected, because we assume an out-degree of 1 for each
peer on level 1 we do have no exact knowledge of. In analogy
to p1, we estimate d2 (the fanout of each routing point on
level 2) from rC and KC . Finally, the number of expected
replies at time t is

R = p3 = d2 · p2 .

Here you can see why assuming static query planning eases
completeness estimation and improves its quality: we can
assume the fanout of d2 for each peer from level 2, even for
those we did not receive information from until now.

In general, the number of leafs can be described by a re-
cursive formula:

p0 = 1, pl =

pl−1X
k=1

d(l−1),k (l = 1, . . . , L), Ŗ = pL

where pl is the number of vertices at level l, and dl,k is the
fanout of the kth vertex at level l.

Algorithm 1 Basic algorithm: new-reply()

1: update-overlay();
2: update-RG();
3: r = r + 1;
4: R = 1;
5: for all routings ρ ∈ RG → get-levels() do
6: R = R + ρ → estimate(R);
7: end for
8: return r

R
;

Based on the notion of routing graphs, the basic idea of es-
timating query completeness works as shown in Algorithm 1.
This procedure is called every time a new reply arrives at
the initiator. After updating necessary information in the
estimated overlay structure and the routing graph RG (one
for each initiated query), the fraction of received results r
and estimated final replies R is returned. Thus, a currently
estimated completeness (on peer level) is determined in an
online fashion. In contrast to, for instance, Seaweed, we do
not estimate this completeness directly on data level. Note
that also aggregation queries return multiple replies, as the
computed aggregation values are refined in an online fashion.

5.3 Routing Trace
But why is it adequate to differ only between two routing

methods, when there is such a wide variety of possible pro-
cessing strategies and indexes to be used? The point is the
amount of information we can extract from a single reply
received. Into each reply, we integrate information about
the way the sub-plan took when traveling through the net-
work during processing. As a consequence, this routing trace
allows to identify the one path from the query initiator to
a leaf of the routing graph that corresponds to this reply.
Intuitively, for estimating the number of replies a query re-
sults in, the quality of this estimation depends on the kind
of information about each routing point we can extract. For
instance, if we know the out-degree d of a routing point be-
fore starting that routing, we can include this information
in each of the d resulting routing traces – and thus, we know
this information at the query initiating side as soon as the
first of the corresponding sub-plans is replied.

5.4 Overhead
The proposed method comes along with a very low over-

head. In terms of messages, there is no overhead at all,
because any information needed is included into query plan
messages and reply messages. The bandwidth consumption
resulting from applying completeness estimation is almost
negligible. Query plans contain only small additional in-
formation, which is the routing trace and a sketch of the
overlay structure as it is known at the query initiator. The
size of the routing trace depends on the size of the routing
graph (more exact, on the maximal routing level L). Each
entry of the routing trace has a constant size. The over-
lay structure grows with the number of peers participating
in the system. In UniStore, we have |p|B for each path p
known to the current peer. Thus, the bandwidth overhead
for each (sub-)plan generated at routing point rp is in bits:

Brp =
X

known paths p

|p|+ Bm ∈ O(N) ,

where Bm refers to the size of the MiMe sent from this rout-
ing point. Note that information of size Bm is always added
to a query plan, regardless if MiMes are sent separately or
not. Thus, bandwidth consumption for one query neglecting
MiMes isX

rp∈RG

d(rp) ·Brp ∈ O(N ·NL−1) = O(NL) .

To make the completeness estimation work, we only have
to keep small information for each routing level. Further, we
have to detect replicated replies, which can occur in repli-
cating overlays, and rely on the DHT to provide estimation
techniques for every DOR method used.

6. GUARANTEES
Completeness estimation as introduced up to this point is

a nice tool, but it only gains really significance and impor-
tance if we provide guarantees, more generally, meaningful
quality measures. This section deals with this important as-
pect. First, we have to consider which kind of measurements
are conceivable and meaningful in order to weight the accu-
racy of the query completeness predicted. We distinguish
between three different kinds of guarantees:

1. A general guarantee for the accuracy that says: “If
completeness is predicted as c%, this is true with a
probability of x%”.
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2. A guaranteed boundary: “If completeness is predicted
as c%, this is above/below the actual completeness
with a probability of x%”.

3. A confidence interval: “If completeness is predicted as
c%, the actual completeness is between (c − y)% and
(c + z)% (with a probability of x%)”.

Which guarantee should be preferred will depend on the
specific application.

We always predict an expected number of replies which is
guaranteed to be below the actual number of replies. This
results in a predicted completeness r

R
which is guaranteed

to be above the actual query completeness. This and the
fact that iff completeness is predicted to be 100% the actual
completeness is 100% can be proved straight-forward. The
idea is to apply an induction over the number of routing lev-
els in the routing graph. We omit the full details here. Note
that this guarantee holds for peer and data level, because if
all potential replies are received all result data is received as
well.

Providing a completeness which is always above the actual
one is more than many systems can provide. But, of course,
we are interested in a general accuracy and in a guaran-
teed lower bound. We investigate three different estimation
techniques: estimate (i) a minimal number of replies, as
introduced before, (ii) an average number of replies, and
(iii) a maximal number of replies. Unfortunately, the un-
predictable nature of the underlying systems prevents from
providing exact guarantees for the latter two methods. Af-
ter briefly introducing them, we will discuss how to provide
probabilistic guarantees instead.

Legend:

FNR

+min est. +avg est +max est.known

replies

DOR

Figure 3: FNR example for min, max and average

Both approaches are based on the already received infor-
mation about the routing graph. The idea is best illustrated
using the small example graph in Figure 3. The middle rout-
ing point from level 1 is known, but not its out-degree in
the FNR level. From the other two subtrees, we already
received 4 replies. By this, we know that there will be
2 more replies for sure (we know the out-degrees of both
routing points) plus at least 1 from the “missing” subtree.
Thus, with the minimal method we estimate 7 replies. As
its name suggests, the average method calculates the aver-
age of out-degrees on the routing level in question, which
is 3. Thus, 9 replies are estimated. Similar, the maximal
method uses the maximum of out-degrees and estimates 10
replies. This methodology is applied for each routing point
with an unknown out-degree. DOR estimations are based
on a predicted structure of the overlay. As UniStore uses
P-Grid, a corresponding tree structure is maintained at ev-
ery peer. Here, average and maximal path lengths from that
tree are used in order to predict the shape of the actual P-
Grid tree. The actual number of replies may still be higher
than predicted with the maximal method. In early states we
also tried a method based on maximal values learned during
time and from different setups. We soon observed that this

method is always far below the maximal method introduced
above – and as we will show in Section 7 this one itself is be-
low the actual completeness in most cases and times. Thus,
we focus on the three methods introduced so far.

DOR

DOR

DOR

replies

(a) left-bound

replies

DOR

DOR

DOR

(b) random

Figure 4: Minimal routing trees for complete DOR

Next, we can relax the conditions needed in order to achieve
a completeness estimation guaranteed by 100%. In fact, we
already reach this point as soon as all needed information
about the routing graph is achieved. For a better under-
standing, we introduce the notion of minimal routing graphs.
For DOR, we need to know about the queried range (known
when planning the query) and the exact number of peers
in that range. This is achieved if one of all identical sub-
queries is completely answered, all the same from which part
of the routing graph. This can also be true if no subtree is
completely known at all, depending on the paths of replying
peers. If all paths of a range are known, the exact number
of responsible peers is known. In the FNR case, much more
information is needed in order to achieve an exact complete-
ness. The out-degree of each routing point must be known.
Thus, at least one result from each routing point on level
L− 1 must be received. This results in complete knowledge
of the routing graph below level L.

FNR

replies

FNR

FNR

(a) left-bound

FNR

FNR

replies

FNR

(b) random

Figure 5: Minimal routing trees for complete FNR

Figures 4 and 5 illustrate this. All routing points and
connections drawn solid are needed at minimum in order to
achieve the 100% guarantee. We picture two out of many
possibilities. In the first one the required information is
located “as much left-oriented as possible”, the second one
is random.

The notion of minimal routing graphs helps to understand
the possible errors we make during completeness estimation.
If any of the solid parts in Figures 4 and 5 is missing, we
include such an error. The depth of the routing graph is
known as long as we expect homogeneous subtrees, because
at least one reply is already received. Thus, the only errors
we can make are to estimate a wrong number of peers in
a range when applying DOR, and estimating a wrong out-
degree of a routing point when applying FNR. In order to
provide a probabilistic guarantee, we have to weight these
errors for each point in time where we estimate the query
completeness c as 0 < c < 100.

On each routing level, we assume the out-degrees of rout-
ing points, the path lengths of nodes in the overlay tree re-
spectively, to follow a specific distribution model. In princi-
ple, any distribution model can be applied, even histograms
for describing arbitrary distributions can be used. Problem-
atic is the complexity of the following calculations. [13] gives
suggestions and instructions for some of the most popular
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models. We refer to the Poisson distribution for out-degrees
and path lengths, because it fits the actual distributions par-
ticularly good and calculations based on this model are very
easy and efficient to implement.

In order to provide a lower bound of query completeness,
below we describe a formula for determining the probability
that the estimated completeness is below the actual. We ex-
pect all occurring random variables to be independent from
each other. Let Nl denote the random variable that esti-
mates the number of routing points on routing level l, and
nl the actual number. Looking only on the maximal routing
level, the probability P (NL = nL) under the condition that
nL−1 routing points exist on level L− 1 is

P (NL = nL|NL−1 = nL−1) =
X

SL−1

nL−1Y
i=1

P (Di = di) ,

where SL−1 is the set of all combinations {d1, . . . , dnL−1}
such that d1+· · ·+dnL−1 = nL. Di describes the out-degree
of an arbitrary routing point on level L − 1. This formula
computes the convolution of the nL−1 random variables. As
mentioned above, using Poisson distributions

P (Di = d) =
λd

i

d!
e−λi

we can easily calculate this convolution using

P (D = d) =
(
P

i λi)
d

d!
e−(

P
i λi)

Known out-degrees are simply excluded from this summa-
tion. This works directly for distributions describing the
observed out-degrees on FNR routing levels. A distribution
describing the path lengths in the overlay must be mapped
to a distribution of out-degrees accordingly. Currently, we
do this using a repository of trees observed over time, but
are investigating other approaches. Using the cumulative
distribution, the guarantee is determined by

P (est. compl. ≤ actual compl.) = P (Ŗ ≤ R) = P (D ≤ R) .

Including lower levels results in a recursive formula. Let Kl

refer to the set of out-degrees already known on level l, kl

to the sum of all out-degrees in Kl. Then,

P (NL ≤ nL) =
uL−1X

nL−1=kL−1

P (NL ≤ nL|NL−1 = nL−1)

·P (NL−1 = nL−1) .

if we use uL−1 := kL−1 + nL − kL − (kL−1 − |KL|) for the
maximal number of nodes that is possible on level L − 1
(respecting known out-degrees and the estimated number of
nodes on level L). This gets

P (NL ≤ nL) =
uL−1X

nL−1=kL−1

P (NL ≤ nL|NL−1 = nL−1) ·

uL−2X
nL−2=kL−2

P (NL−1 = nL−1|NL−2 = nL−2) · · · · ·

u1X
n1=kl

P (N2 = n2|N1 = n1) · P (N1 = n1) .

If levels of the routing graph are completely known, corre-
sponding probabilities resolve to either 1.0 or 0.0 and these
parts could be extracted from the calculation. This is what

we did with level 0 in the above formula. If individual parts
of one level are unknown, this requires computing the con-
volution in the according routing level. With Poisson distri-
butions and the information gathered for completeness esti-
mation this probabilistic guarantee can be calculated with
ease. An according line P = P (Ŗ ≤ R) is added between
line 7 and 8 in Algorithm 1, and the determined probability
P is returned together with the estimated completeness. In
early query states, the significance of the calculations will
be very poor. With proceeding time this improves quickly.
Evaluating different distribution models and the significance
of applying them is part of our ongoing work.

As an optimization technique, we introduce Milestone Mes-
sages (MiMes). The idea is to send information from each
routing point in a separate message directly back to the ini-
tiator while forwarded sub-plans are still processed in the
network. They only include information that is available in
the routing trace of a reply as well. But, due to slow or
failing peers, they help to improve the accuracy of the es-
timation in early states. MiMes are sent irregularly when
a certain part of the query plan is processed. They are not
essential for applying the proposed completeness estimation,
but increase estimation quality represented by better prob-
abilistic guarantees. The number of generated MiMes in-
creases with the number of peers involved in processing a
single plan. Thus, it increases with the number of peers in
the system. The bandwidth overhead can be regarded as a
constant factor. Due to space restrictions, we omit further
details here.

7. EVALUATION

ξ
q1

ξ

σ∼

ω

q2

ξ ξ

./∼

ω

ω

q3

ξ

ω

α

q4

ξ

ξ

ω

./=

ω

ω

α

q5

Figure 6: Shape of evaluation queries

Setup We evaluated the proposed approach running an ex-
tended set of experiments on a local environment running
up to 74 independent instances. Further, we repeated these
tests on Planet-Lab [4], a world-wide consortium created
especially for running large-scale distributed experiments.
Planet-Lab is specifically dynamic and unreliable. At the
time of our experiments, we could allocate only very few re-
sources, so that we could only run a couple of our queries
in a meaningful sense. In each run we built a P-Grid net-
work with standard parameters from scratch. We based our
experiments on a mixture of triple data from DBPedia1, ge-
ographical data in relational format from Mondial2, and a
small set of ontology data. This data is taken from a real-
istic scenario combining geographical data from both sets.
After a certain waiting time for establishing a suitable over-
lay trie, we initiated the queries described below. Applying
UniStore’s vertical data scheme and building two different
indexes, this resulted in a total of about 16,000 index entries.
The set of all generated keys shows a skewed heavy-tail dis-
tribution (power-law like). We ran the tests on networks of

1http://dbepdia.org
2http://www.dbis.informatik.uni-goettingen.de/Mondial/
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Figure 7: Accuracy for separated routing methods
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Figure 8: Minimal, maximal and average estimation

size 25, 50 and 74. In Planet-Lab we were able to include
about 400 nodes in each run.
Queries The used query mix was chosen in order to be rep-
resentative for both routing methods introduced and to span
from simple to rather complex queries. We divided them into
classes of queries, which we refer using q1, q2, ..., qA, qB etc.
Figure 6 shows the general shapes of 5 of these classes. They
were issued using different access paths. In addition, we ran
two complex queries qA and qB involving ontology data and
combining it with data from DBPedia and Mondial. qg1, qg2

and qg3 represent queries containing only FNR routings.
The aim of the evaluation is to show that the proposed

method works correctly. Further, we will highlight the ben-
efits of using MiMes for achieving a higher accuracy in early
query states and compare the three different estimation tech-
niques min, max and avg. From all experiments, we selected
the results that are particularly suited for this. In all of the
following figures we plot the number of received replies on
the x axis. Thus, actual completeness for each query is the
straight line from (0, ) to (Ŗ, Ŗ). We omit this line in or-
der to improve readability. Rather, we plot completeness on
data level (denoted by dl) to additionally show the correla-
tion between both.

We begin with evaluating the accuracy of completeness es-
timation separately for the supported routing methods. As
already shown in [9], we expect DOR routings to be esti-
mated very accurate. A more challenging task is to satis-
fyingly estimates FNR routings, because more information
from the routing graph is needed for that. Figure 7 shows
representative results by plotting the minimal CE calculated
with each received reply. As expected, DOR routings (7(a))
are estimated very accurately with first replies. This is
due to the fact that sufficient information about the overlay
structure can be collected by one sub-plan traveling through
the network. Depending on the number of FNR parts, esti-
mation gets inaccurate in early query states. If only FNR is
applied (7(b)), there is a clear gap between estimated and ac-
tual query completeness. This gap can also be observed with
less FNR parts, e.g., when integrating sequential operators
(7(c)). All three figures show that completeness on data level
is satisfyingly good approximated by peer level, albeit the
drift between both increases with rising query complexity.

Next, we want to investigate the impact of the introduced
average and maximal estimation methods. As DOR routings
seem to be a by far lower challenge than FNR routings, we
focus on queries containing at least one FNR routing. Fig-
ure 8 shows corresponding results for selected queries. In
8(a)-8(c)we show that there can be significant differences
between all three techniques. As expected, the minimal
number estimation is always above the actual complete-
ness, whereas the maximal one is mostly located below. To
our pleasure, completeness on data level is mostly very well
approximated by both, minimal and average completeness.
The maximal method is rather pessimistic, resulting in a
predicted completeness far below the actual one – but this
also means, it provides what it was invented for: a guar-
anteed lower bound. The observed probabilistic guarantee
approaches 90% for the maximal estimation rather quickly,
whereas the average one usually balances between 50%-80%.
As expected, the proposed guarantee is around 2%-5% for
the minimal estimation technique.

All the results presented up to here were gathered using
MiMe support. We believe in the small overhead worth for
achieving a higher quality of estimation. This is approved by
the results shown in Figure 9. We chose to picture a query
with high degree of parallelism, because MiMes become par-
ticularly advantageous in this case. The differences between
9(a) and 9(b) reveal that without heartbeats corrections to
the estimated value are bigger and occur more often. The
overhead paid for this increases linearly with the number of
received replies (9(c).

Finally, we show that scalability in terms of network size
is really no issue for the achieved accuracy. In Figure 10
we picture the completeness plots for three selected queries.
All three estimation techniques behave analog to the local
setup. As seen before, completeness on peer level is esti-
mated very exactly. This matches the data level very well in
most cases, but obviously not in all situations. An irritating
point is that our maximal completeness estimation reaches
a value higher than 1.0, which should not happen by imple-
mentation. This can only be due to high inconsistencies in
the overlay structure, caused by the painfully slow nature
of Planet-Lab. Currently, we are investigating this issue in
detail.
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Figure 9: Impact of MiMes
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Figure 10: Queries on Planet-Lab

Summarizing, we were able to show the accuracy of the
proposed method for estimating query completeness. By in-
troducing three different techniques, we are also able to de-
termine guaranteed lower and upper bounds. The resulting
curves show either a straight line or a lightning-like shape,
getting the more escalating the higher the degree of paral-
lelism (and data-dependence) gets. The curves produced by
Seaweed show a Z-shape instead. This is due to the fact that
Seaweed aims at providing delay-aware querying while focus-
ing on aggregate queries. Downtime of unavailable peers is
predicted and results are gathered when this time passes.
In contrast, UniStore follows a best-effort approach, which
is also reflected in the dynamic and online character of its
completeness estimation.

8. CONCLUSION
In this paper, we have proposed an approach for address-

ing one of the main problems in P2P database systems which
is completeness estimation for query answering. We have de-
fined completeness in the context of structured P2P systems
and motivated its need for both user and system require-
ments. For completeness estimation, we distinguished two
basic classes of routing methods underlying the query pro-
cessing strategies. Based on this, we have described the es-
timation of completeness by observing the progress of query
execution at peer (routing) level. Furthermore, we have dis-
cussed the accuracy of the estimations in terms of prob-
abilistic guarantees and introduced milestone messages for
tracking the query progress. We have implemented the over-
all approach as part of our P-Grid-based UniStore system
where it is exploited both for giving feedback to the user
as well as for supporting blocking operators such as aggre-
gations or skyline operators efficiently. The results of our
large-scale experimental evaluation show the suitability of
the approach as well as the validity of the estimations.
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