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Abstract

Nature uses a complex genotype-phenotype map to advance a relatively simple geno-

type space variational topology to an extremely complex phenotypic variational topol-

ogy. This dissertation introduces a modular, fixed non-trivial, multi-layered genotype-

phenotype map, incorporating an interpretation of the biological processes of tran-

scription and translation into the representation of a Genetic Algorithm (GA), thereby

introducing a more flexible phenotypic structure and increasing connectivity. A se-

ries of experiments are conducted to examine the impact of the representation on

variation and variability, with results indicating that through the inclusion of the

proposed multi-layered mapping, only a small fraction of genotypic mutations are

adaptive. Results also suggest that slowing genetic drift has an important part to

play in the evolution of a population, allowing the representation to foster the cre-

ation of highly connected neutral networks, altering genetic drift and changing the

evolutionary trajectory by inducing variability.
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Séamus Hill and Colm O’Riordan,

Proceedings of the 8th International Conference on Evolutionary Computation Theory and

Applications (ECTA 2016),

Porto, Portugal, 2016.



Acknowledgments

Ah Colm how you have suffered with this baby... Thank you so much!

I would also like to thank the external examiners Prof. Pier Luca Lanzi from the

Politecnico di Milano and Prof. Juan Julian Merelo from the University of Granada;

the internal examiner Dr. Conn Mulvihill, for their kind words and advice.

xiii



Chapter 1

Introduction

1.1 Genetic Algorithms

Evolutionary Algorithms (EAs), as a problem solving paradigm, attempt to sim-

ulate the process of evolution as found in nature in a computer environment [8,

162, 175, 197]. EAs are stochastic algorithms which use natural phenomena such as

survival of the fittest and the inheritance of genetic material. Evolution can be char-

acterised using various levels of hierarchy, such as species, individuals, chromosomes

and genes [56]. Genetic Algorithms (GAs) [95, 67] are a type of EA and are based on

natural occurring phenomenon such as reproduction, recombination, mutation and

selection. GAs are search algorithms based on the Darwinian principle of survival of

the fittest [39]. An initial population of individuals is created, each representing a

possible solution to a given problem. The individuals in the population are allocated

a fitness score based on their suitability towards the environment in which they exist

[161]. The individuals are then subjected to environmental pressure and based on

1



Chapter 1: Introduction 2

their fitness scores, natural selection takes place, with fitter candidates being offered

the chance to seed the next generation through the use of operators such as recombi-

nation and mutation. In this way a new population is created and represents a new

generation. The two processes at work here are first, the use of operators such as

mutation and recombination to create variation within the population and second,

selection, which encourages quality. Ultimately the effectiveness of any EA is deter-

mined by the relationship between the landscape and the operations used to create

new individuals [3].

The search process of a GA can be broken into two processes: exploration, where

the new generation of individuals test unexplored areas of the search space, and

exploitation, where the search focuses on areas where good solutions reside. Main-

taining a balance between exploration and exploitation is critical for a GA to succeed

in searching the search space. As the search progresses, GAs map from the genotype

or the representation of the individual in the population, to the phenotype, which can

be viewed as a manifestation of a possible solution to the particular problem. This

leads to a situation where the search moves from the genotype space to the phenotype

space. The relationship between the genotype and the phenotype is determined by

the genotype-phenotype mapping. In standard GAs each phenotype is represented

by a distinct genotype.

GAs typically tend to use a fixed one-to-one genotype-phenotype map; implying

that each genotype relates to a specific phenotype [169]. This means that if evo-

lution is based on a genotype-phenotype map where each phenotype is represented

by a particular genotype, you arrive at a point where there is a static fitness value
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associated with every genotype in the population, then a particular genotype which

represents the local optimum would have to accept a lower fitness value to escape

and begin searching for a fitter point in the landscape. This is because there is no

neutrality in the representation. With a neutral representation each phenotype could

be represented by a number of different genotypes.

However, if the genotype-phenotype map were to include neutrality then there

is the possibility of continuing the search by drifting along neutral networks in the

genotype space [169]. In other words we have, by increasing neutrality in the genotype-

phenotype map, changed the genotypic neighbourhood, as there are a neighbourhood

of genotypes that map to the same phenotype, so even when an individual becomes

trapped they can continue the search without the loss of fitness. Therefore, by having

a many-to-one genotype-phenotype map, we introduce these phenotypically neutral

neighbours [169], which potentially, allow a passage through the genotype space with-

out losing fitness when trapped.

The phenotype space can also be viewed as the phenotypic topological space which

can also contain a set of neighbourhoods. However, the difficulty here is that phe-

notypes, by their nature, are not altered by physical processes such as mutation. To

overcome this, neighbourhoods in the phenotypic topological space can be classified

by closeness in terms of a continuous evolutionary path. Therefore, by examining

the frequency by which a mutation on a particular genotype yields a phenotype, we

can define a notion of closeness in the phenotypic topological space [59]. Neutrality

and neutral genetic drift in the mapping process is important in defining the pheno-

typic topology, and the variation in phenotypic topology. Because of the presence of
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neutrality, phenotypes can be used to mean similarity between genotypes. Thus, the

closeness of phenotype neighbourhoods depends on neighbourhood closeness among

genotype neighbourhoods [60]. The genotype-phenotype map generates a phenotypic

neighbourhood, which very often differs from the idea of proximity which exists be-

tween phenotypes when we consider them as a whole [59]. The relationship between

the genes and the phenes (phenotypic traits which have an influence on a phenotype’s

overall fitness) is controlled by the genotype-phenotype map [1].

GAs have a hierarchy, similar in concept, to those found in nature and chromo-

somes and genes are the elements involved in simulating evolution. But, due to the

simplicity of the representation, attempts to make the algorithms biologically accurate

are not possible due to the level of abstraction inherent in the elements of a GA [56].

Because of this, the operators used in association with GAs are basic interpretations

of those found in nature. However, the concepts observed in nature, prove useful in

providing GA practitioners with ideas and analogies to interpret and incorporate, at

an abstract level, into GAs in an attempt to improve performance [56].

As time progresses, knowledge of the concepts found in nature changes. A ques-

tion as to which force is dominant in relation to evolution has existed for many years.

Is natural selection the primary force that shapes evolution or is it the variation of

genetic material? Darwin [39] argued for selection, although without a knowledge

of genetics, while Sewall Wright [203] noticed that many random changes in the fre-

quency of alleles occurring in a population were not related to selection. Wright’s

observations indicated that this genetic drift, meaning a change in a population’s

gene frequency resulting from a random variation in the distribution of genes from
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one generation to the next, was an important component in the evolutionary process.

Neutral theory as proposed by Kimura [111], offered an alternative to the Darwinian

view and states that the mutations involved in the evolutionary process are neither

advantageous nor disadvantageous to the survival of an individual, and that most

adaptive mutations are not due to selection but rather to random genetic drift. How-

ever, Kimura [112] pointed out that although natural selection does play a role in

adaptive evolution, only a tiny fraction of DNA changes are adaptive. The vast bulk

of mutations are phenotypically silent. Nei [139] argues that all evolution must be

non-Darwinian and as phenotypic characters are under the control of DNA sequences,

molecular and phenotypic evolution must take place under a similar non-Darwinian

approach. Nei also argues that the majority of morphological evolution is as a result

of neutral or nearly neutral mutation and therefore mutation can be considered the

main force behind evolution at both the molecular level and the phenotypic level

[139].

1.2 Biological Concepts

In biological studies, Mendel discovered that nature holds all of the genetic infor-

mation relating to an individual in pairwise alleles [153]. This genetic information

determines the various physical characteristics that go to make up a particular indi-

vidual. Later it was discovered that genes are made up from a long molecule known

as DNA, which is copied and inherited from generation to generation. The genetic

information is made up of a double string composed of four nucleotides (A, C, G and

U) and line up in a particular order on the molecule, with the particular order of
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the nucleotides carrying genetic information, similar to the order of letters in a word.

Mendel also understood that the genetic representation of an individual differentiated

between the genetic code and the outward manifestation [153].

The guiding principle of molecular biology states that information which is lo-

cated in DNA is copied, through Transcription, to RNA. Following this, Translation

takes place which uses RNA to assemble proteins. Transcription transforms a gene

into an RNA molecule that is complementary to one strand of the DNA double helix.

Following this, translation uses the information stored in three types of RNA to man-

ufacture a protein by combining specified amino acids. RNA acts as a link between

gene and protein and is complementary to one strand of the double helix, called the

template strand, with the other strand being the coding strand. More recent research

suggests that there are many exceptions to this, i.e. that much of the DNA does not

encode proteins and instead encodes various types of functional RNAs [15].

The feature of a cell can be viewed as a trait and traits which are inherited are

known as genotypes. Other traits emerge from the interaction between our genes and

the environment in which they operate and are known as phenotypes. That is, the

genotype contains the genetic code and the phenotype is the manifestation of the code

coupled with the environment. Living organisms, when viewed from the perspective

of evolution can be seen as a result of the mapping from their genotype to their

phenotype. Evolution is the process of searching the genotypic and phenotype spaces

through the use of genetic operators such as mutation and recombination followed

by selection. While genetic operators operate at the genotypic level, fitness-based

selection operators function at the phenotypic level. Because of this, the relationship
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between the genotype and the phenotype can be expressed as the genotype-phenotype

map [178].

Phenotypic variation is essential for evolution and a phenotype’s variational prop-

erties are critical in an evolutionary process incorporating natural selection [192]. For

adaption to take place, changes at a genetic level have to enable adaptive phenotypic

changes [192]. The genotype-phenotype map is an essential component in produc-

ing adaptive changes. Adaptation takes place when favourable mutations occur and

this is dependant upon genetic variation which maps onto phenotypic variation [192].

The concepts of Variation and Variability need to be differentiated. Variation can

be described as the difference between individuals in a population and can be seen as

relating to a collection [151]. Variability, on the other hand, can be described as the

leaning to vary and the variability of a phenotypic trait describes the way in which

it changes in response to environmental and genetic influences [192]. A genome’s

variational properties, that is the variation which occurs in the phenotype as a result

of genetic variation, are fundamental to evolution and the genotype-phenotype map

determines the variability of characters [192].

The genotype-phenotype mapping can be described by pleiotropy and polygeny.

Pleiotropy occurs when a single gene may simultaneously influence a number of pheno-

typic traits. Polygeny defines how the simultaneous interaction of a number of genes

impacts on a single phenotypic trait. When pleiotropy and polygeny are present in a

representation it prohibits the simplification of the genotype-phenotype mapping as

a single change in the genotype may result in a number of changes in the phenotype

and individual phenotypic traits are not linked to a single change at the genotypic
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level [56].

1.3 Modularity & GA Representation

Modularity is a common feature of organismic design [192] and can be viewed as

a genotype-phenotype map that contains little pleiotropic interaction between char-

acters operating on different functions. The effects of pleiotropy are mainly seen

between characters operating on a single function. A modular approach is viewed

as improving evolvability by reducing the interference by limiting the interference

between the adaption of different functions [192]. Modularity has also been adopted

in artificial systems i.e. Gruau et al. [82] and is included to simplify complexity.

Overcoming the representation problem is critical for GAs and is fundamental as to

whether or not a GA can produce adaptation. The representation problem relates to

the way in which candidate solutions are represented; therefore solving an optimisa-

tion problem is only possible if the problem is encoded in a way which the variation

and selection processes are effective in obtaining a solution [192]. Associated with

this is adaptability and the need to consider how representations translate genotypic

mutations into phenotypic ones [147].

Thus, the genetic representation of a trait determines the variability of the pheno-

type rather than the genetic variation within the population [192]. As the genotype-

phenotype mapping is central to the representation problem, it determines the ability

of the phenotype to evolve [192]. Modularity of the genotype-phenotype mapping can

be described as having a separate genetic representations of character complexes, for

each distinct function. [192]. Therefore, by limiting the pleiotropic effects of genes,
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through the use of modularity in the genotype-phenotype mapping, the problem of

unrestricted pleiotropy as the number of interactions between parts increases can be

avoided [192].

Representations control the assignment of genotypes to phenotypes and represent

a solution to a problem. Changing the representation can change the nature and

difficulty of a problem. As the representation is the mapping from the genotype to

the phenotype, for both the genotype space and the phenotype space the distances

between individuals is measurable [155]. In relation to a genotype-phenotype map-

ping, a non-trivial map can be viewed as having the following characteristics: firstly,

a phenotype can be encoded by many genotypes and secondly, the variability of a

number of phenotypes will depend on their genotype [182].

Representations are viewed as being synonymously redundant when genotypes

representing the same phenotype are quite alike. Also, if neighbouring genotypes

correspond to neighbouring phenotypes, a representation is viewed as having a high

locality of reference [154]. Non-synonymously redundant representations, on the other

hand, allow genotypes which are quite different from one another represent the same

phenotypes. Because of this, non-synonymous representations prevent genetic oper-

ators functioning as normal and reduce the performance of GAs [155]. Theoretical

models indicate that when compared with non-redundant representations, synony-

mously redundant representations fail to alter the performance of selectorecombina-

tive GAs (GAs which include selection and recombination) once all phenotypes are,

on average represented by a similar number of different genotypes [155]. Only when

some phenotypes are over-represented does the performance of a GA change by the use



Chapter 1: Introduction 10

of a redundant representation [155]. However when taking account of neutral theory,

the accumulation of neutral mutations can lead to new paths being found [35, 37].

But with trivial neutrality, neutral traits have no impact on phenotypic evolution

[183]. Non-trivial neutrality, on the other hand, suggests different genotypes within

a neutral network can induce different phenotypic distributions [147], impacting on

the evolutionary path.

1.4 Open Research Questions

Although there has been a lot of research undertaken into neutrality in the Evolu-

tionary Computation community over the past number of years, the majority of this

research involves GAs, possibly because of the type of representation employed by

GAs. There are still many questions left unanswered, relating to variational topology

and the evolutionary path, for which it is hoped that the dissertation will develop a

better understanding. Open questions relating to the efficacy, variation and variabil-

ity of a modular based, fixed, non-trivial many-to-one genotype-phenotype mappings

and GAs are outlined below:

• How does the introduction of neutrality, through the use of a biologically in-

spired genotype-phenotype mapping, impact on a population’s evolutionary tra-

jectory over static and dynamic fully deceptive landscapes?

• How, over landscapes of varying degrees of hardness, does the inclusion of neu-

trality into the genotype-phenotype map of a GA influence genotypic and phe-

notypic variation?
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• How does the introduction of a neutral representation into the primary structure

of a GA impact on heterogeneity over a fully deceptive changing landscape?

• How does altering the granularity of neutrality, which introduces varying degrees

of neutral drift, impact the phenotypic variability of a genetic algorithm with a

many-to-one genotype-phenotype map?

• How does the introduction of neutrality, through the use of a biologically in-

spired genotype-phenotype mapping impact on the evolutionary path and phe-

notypic variability over a fully deceptive changing landscape?

1.5 Dissertation Goals and Hypothesis

This dissertation examines the inclusion of a multi-layered genotype-phenotype

mapping in a GA based on the principles of modularity and neutral theory. The

multi-layered genotype-phenotype mapping introduces redundancy into the haploid

representation through an adaptation of the biological process of Transcription and

Translation. The mapping allows sections of the genotype encode traits similar in

concept to various types of functional RNAs, and also includes an interpretation of

Missense mutation within the representation’s layers. The Multi-layered GA (MGA)

presented in the dissertation contains a modular, fixed, non-trivial representation,

designed to combine Darwinism and neutral theory. Because of the nature of the

mapping, it can be considered synonymous as genotypes representing phenotypes are

relatively close to one another, thereby allowing variation operators to function in a

problem independent manner.
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By developing a GA which incorporates the principals of Darwinism and Neutral

theory, the goal is to develop and analyse a biologically inspired modular, fixed, non-

trivial, multi-layered genotype-phenotype mapping for a GA based on the principle of

modularity and examine the impact of the representation on variation, variability and

the evolutionary trajectory. To examine the impact of the representation, comparisons

are performance based and a search strategy is viewed as beneficial if optimisation

is achieved in fewer generations (taking into account the No Free Lunch Theorem

[202]). The hypotheses emerging from the research questions are as follows:

• MGA Efficacy Hypotheses

– H1: Including a biologically inspired, multi-layered, many-to-one genotype-

phenotype map into a GA, benefits searching fully deceptive changing land-

scapes.

– H2: The inclusion of a biologically inspired, modular, fixed, non-trivial,

multi-layered genotype-phenotype map into a GA, can perform as robustly

as a standard GA in optimising De Jong’s test suite.

• MGA Variation Hypotheses

– H3: Diversity, implicitly maintained by a many-to-one, genotype-phenotype

mapping of a GA, implemented by an interpretation of the biological pro-

cesses of Transcription and Translation, is beneficial in searching noisy

and dynamic landscapes.

– H4: Introducing neutrality into the representation of a GA, through a mod-

ular, fixed non-trivial mapping, is beneficial in searching static landscapes
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with varying levels of difficulty.

– H5: Including a modular, fixed non-trivial genotype-phenotype map which

introduces a more flexible phenotypic structure and a higher degree of phe-

notypic variation through the use of neutrality, benefits the optimisation of

solutions over dynamic landscape problems.

– H6: A modular, fixed non-trivial genotype-phenotype mapping, which in-

troduces neutrality into the primary structure of a GA, maintains hetero-

geneity and is beneficial in promoting exploration over a fully deceptive

changing landscape.

• MGA Variability Hypotheses

– H7: Altering the level of granularity alters the size of the Translation table

and impacts on the search over more difficult dynamic landscapes.

– H8: The benefit of including a Transcription phase in a many-to-one,

genotype-phenotype mapping, increases as the level of problem difficulty

increases over more difficult dynamic landscapes.

– H9: An interpretation of Missense mutation, included within the layering

of a biologically inspired, multi-layered genotype-phenotype mapping GA,

assists searching more difficult dynamic landscapes.

– H10: A modular, fixed non-trivial genotype-phenotype mapping, which in-

troduces neutrality into the primary structure of a GA, alters the evolution-

ary trajectory and is beneficial over a fully deceptive changing landscape.
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1.5.1 Motivation

The aim of this dissertation is to develop and empirically analyse a modular, multi-

layered GA, which introduces neutrality in the representation through an adaptation

of the biological concepts of Translation and Transcription and uses a fixed, non-

trivial genotype-phenotype map that introduces a more flexible phenotypic structure

and a higher degree of phenotypic variability. This framework will allow an inves-

tigation into the impact of neutrality over various problem landscapes in order to

answer the research questions posited. The objective is to investigate whether a GA

incorporating a non-trivial neutral representation induces phenotypic variability and

whether it can prove beneficial in searching a test suite of static and dynamic fitness

landscapes, specifically examining the impact of problem difficulty on population dy-

namics by comparing the performance with that of a simple GA. The objective of the

thesis is expressed as a series of tasks, each represented by a number of experiments.

1.5.2 Methodology

The methodology chosen is a deductive approach, as the research sets about test-

ing the theoretical proposition laid out in the hypothesis. In other words, it moves

from the general to the specific. This follows a top-down approach as the research

moves from theory to creating testable hypotheses. To test the hypotheses a series of

experiments are conducted on a test suite of suitable problems. Following this, the

results produced will be quantitatively analysed to prove or disprove the hypotheses.
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1.5.3 Contribution

By using a modular approach to combine Darwinism, Neutral theory and an adap-

tation of a number of biological concepts, the main contribution is the development

of a novel, non-trivial, layered representation which introduces a tunable degree of

neutrality into the primary structure of a GA in order to provide effective pressure

to maintain useful diversity within the population, thereby allowing recombination

cross the diversity with other building blocks, permitting continued exploration [75].

The layered representation is designed to maintain variation and increases variability,

while allowing a haploid primary structure and standard variational operators func-

tion in a problem independent way. The implementation of this framework allows an

examination into the impact of neutrality over specific landscapes and tests to see if

the proposed layered representation impacts on the search strategy by altering genetic

drift and slowing convergence, thereby locating a balance between exploration and

exploitation. A secondary contribution, is in the use of the proposed representation

for exploring the effects on variation and phenotypic variability of including biolog-

ically inspired variational operators within the layers of a GA, thus facilitating the

examination of their impact on variation and variability. The thesis contains extracts

from the following publications by the author: [86, 87, 88, 89, 90, 91, 92, 93].

1.6 Thesis Structure

The remaining dissertation layout is as follows: Chapter 2 reviews the literature

with regard to the fundamentals of GAs and the measurement of GA performance
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through the use of test suites. Chapter 3 examines the literature in relation to neu-

trality and the use of synthetic neutrality in artificial systems. Chapter 4 outlines

the motivation and design of the proposed multi-layered GA (MGA). Chapter 5 ex-

amines the efficacy of the MGA and tests hypotheses H1 and H2 through the use

of experiments designed to measure GA performance. Chapter 6 tests hypotheses

H3, H4 and H5 through experiments which look at the variation or diversity (the

average distance between individuals in a population [12]) associated with the MGA,

Chapter 6 also introduces the missense mutation operator. Following this, Chapter 7

presents experiments which test hypotheses H7, H8 and H9 while looking at the arity

of the MGA. Chapter 8 examines the population evolution of the MGA and looks

at phenotypic distribution and population diversity, carrying out experiments to test

hypotheses H6 and H10. Finally, Chapter 9 discusses the overall findings in relation

to previous research and provides a summary and conclusion.

1.7 Chapter Summary

This chapter introduced and motivated the topic in question, which is to analyse a

biologically inspired modular multi-layered genotype-phenotype mapping, which will

allow for the examination of variation and variability. The chapter briefly outlined

the areas to be discussed subsequently in the dissertation. The chapter also outlined

the dissertation goals, hypothesis, motivation, methodological approach, contribution

and dissertation structure. Chapter 2 gives a brief overview of the fundamentals of

GAs and describes a number of well known problem landscapes which were used for

experimentation in the dissertation.



Chapter 2

Genetic Algorithm

Fundamentals & Performance

Measurement

2.1 Introduction

This chapter provides an introduction to Genetic Algorithms (GAs) and an overview

of the workings of GAs, discussing concepts such as schema; the schema theorem; the

building block hypothesis and implicit parallelism. The chapter outlines the use of

exploration and exploitation in the search process and describes the notion of a fitness

landscape. The chapter then goes on to outline a number of test suites used to mea-

sure the performance of GAs. The chapter is laid out as follows; Section 2.2 briefly

introduces GAs; Section 2.3 discusses GA theory and discusses GA fundamentals.

Section 2.4 describes the process of searching and Section 2.5 outlines the concept of

17
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a fitness landscape. Section 2.6 outlines a number of landscapes commonly used in

the analyse of GA performance and chosen for this dissertation. Finally, Section 2.7

concludes and summarises the chapter.

2.2 Genetic Algorithms - Above the Surface

Genetic Algorithms (GAs) [95, 67], are search algorithms based on the Darwinian

principal of survival of the fittest [39]. An initial population of individuals is created,

each representing a possible solution to a given problem and individuals in the popu-

lation are allocated a fitness score based on their suitability towards the environment

in which they exist. The individuals are then subjected to environmental pressure and

based on their fitness scores, selection takes place, with fitter candidates being offered

a higher probability to seed the next generation through the use of operators such as

recombination and mutation. In this way a new population is created and represents

a new generation. The main focus in this dissertation is on simple GAs (SGA) as

outlined by Vose [190], which include selection, recombination and mutation. The

two processes at work here are the use of variation operators (i.e. recombination

and mutation) to create diversity or variation in the population and selection, which

encourages quality [174, 158].

In Adaptation in Natural and Artificial Systems John Holland, presented Ge-

netic Algorithms as an abstraction of biological evolution and developed a theoretical

framework, which can be adopted for GAs [95]. GAs are search techniques based on

Darwin’s theory of natural selection and evolution. The ability to artificially mimic,

at a very basic level, the mechanics of natural selection and genetic recombination
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has proved very useful in producing acceptable solutions to problems where there

is very little information available with regard to the objective function, that is to

say, problem domains where random search would be of little benefit in finding an

adequate solution. This branch of problem solving is often referred to as black-box

optimisation. With an encoding, which correctly represents an optimisation space, a

GA does not require any other information to evolve a solution to a given problem.

GAs operate on populations of individuals, each representing a potential solution

to a given problem. Each individual made up from a number of genes to create a

genome. The individuals in a population are assigned fitness levels based on how well

adapted they are to their search space, or their environment, defined by the fitness

function. The idea being to introduce selection into the equation. Individuals then

simulate reproduction, based on their level of fitness, by recombining genetic material

from two individuals (recombination). Other natural operations such as mutation can

also be included, normally at a much lower rate than that of reproduction. Each cycle

creates a new population based on the genetic material from the old population, with

new material possibly being introduced by the mutation operator. Each of these

cycles is known as a generation. This process of selection, reproduction and mutation

continues until the population reaches either a pre-described number of generations

or some other external criteria is achieved.

The simple GA (SGA) [95, 67, 190] uses 1-point crossover, where two mating

chromosomes are each cut once at corresponding points, and the segments follow-

ing the cuts are exchanged [17]. The 1-point crossover operator randomly chooses

a locus and exchanges the parts of the strings before and after that locus between
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two chromosomes to create two offspring. For example, the strings 10000100 and

11111111 could be crossed over after the third locus in each to produce the two

offspring 100 11111 and 11100100 . Crossover is often viewed as the predominant

operation in GAs. The SGA uses a single-bit mutation operator which changes the

values of a location on the chromosome. It randomly flips some of the bits in a chro-

mosome. For example,the string 00000100 might be mutated in its second position

to yield 01 000100. Mutation can occur at each bit position in a string with some

probability, usually very small (e.g., 0.001) [131].

Traditionally, mutation is seen as a ‘background’ operator responsible for re-

introducing mistakenly lost gene values (alleles), preventing genetic drift, and provid-

ing a small element of random search when the population has largely converged. It

is generally accepted that crossover is the main force leading to a methodical search

of the problem space. However, examples in nature show that asexual reproduction

can evolve sophisticated creatures without crossover [17]. Tate and Smith [181] argue

that the optimal mutation rate depends strongly on the choice of encoding, and that

problems requiring non-binary encoding may benefit from mutation rates much higher

than those generally used with binary encodings. While Bäck argues that variation

in the mutation rate may accelerate optimisation [6, 7].

De Jong’s work An Analysis of the Behaviour of a Class of Genetic Adaptive

Systems [43] set the stage for many of the heuristics which have been used in the cre-

ation of GA theory. De Jong developed a basic structure and a number of operations

which created the SGA, consisting of roulette wheel selection (fitness-proportionate),

one-point crossover and mutation. These three processes worked on a population of
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binary strings with fixed orderings and with each generation a certain percentage of

the population, known as the generation gap, would be replaced by the processes. De

Jong’s work defined GAs as a group of algorithms parameterised by the population

size (n), the probability of crossover (pc), the probability of mutation (pm), and the

generation gap (G).

Representation issues for GAs tend to address the question of how to engineer

GAs. Related to representation issues is the choice of genetic operators for introducing

variation into a population. One reason that binary linearly ordered representations

are frequently used is that standard mutation and crossover operators can be applied

in a problem independent way. “In natural genetic systems, one gene (approximately)

codes for the one protein regardless of where it is located, although the expression of

a gene (when the protein is synthesised) is indirectly controlled by its location” [132].

Despite this, most current GA implementations use a simple binary alphabet, linearly

ordered along a haploid string. Researchers interested in engineering applications have

believed that the use of “high-cordiality alphabets” including real numbers as alleles

should be advocated [132].

2.3 Genetic Algorithms - Below the Surface

In order to understand how GAs work, an understanding of Holland’s notion of

building blocks [95] is essential [69]. Holland puts forward the schema theorem [95] to

explain how a GA can engage in a complex and robust search by implicitly sampling

hyperplane partitions of a search space [199]. A schema is a collection of gene values

which may be represented (in a binary coding) by a string of characters contained
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within the alphabet 0, 1, *, where * means “don’t care” [133]. A chromosome con-

tains a particular schema if it matches that schemata, with the “*” symbol matching

anything. For example, the chromosome “1010” contains many schemata including,

“10**”,“*0*0”, “**1*” and “101*”. The order of a schema is the number of non-*

terms it contains (2,2,1,3 respectively in the above examples). The defining length

of a schema is calculated by the distance between the outermost non-* symbol (i.e.

2,3,1,3 respectively from the examples above).

Holland described mathematically how the number of representatives of a schema

alter as one generation progresses to the next. This was summarised by Holland in

the Schema Theorem [95].

m(H, t+ 1) ≥ m(H, t)
f(H, t)

f(t)
(1− pc

δ(H)

ℓ− 1
− pmo(H)) (2.1)

Where m(H, t) is the number of occurrences of schema H at time t. f(H, t)

represents the average fitness of the occurrences of schema H at time t. f(t) represents

the average fitness of the population at time t. δ(H) is the defining length of schema

H , pc is the probability of crossover and pm is the probability of mutation. ℓ represents

the length of the string and finally o(H) is the order of schema H [67].

The schema theorem helps to explain the power of a GA in terms of how schemata

are processed. Members of the population are individually given the chance to repro-

duce, and create offspring. The number of chances an individual receives is directly

related to that individuals fitness; in other words, there is a high probability that

fitter individuals will contribute more of their genes to the next generation. It should

be noted that it is assumed that a individual’s high fitness is due to the fact that
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it contains good schemata. By passing ‘fitter’ schemata to the next generation it is

more likely that a better solution will be found. Others such as Stephens and Wael-

broeck [179, 180], argue that through course graining, there is no preference for short,

low-ordered schemata and there can exist a preference for large schemata.

Holland [95] showed that the optimal way to explore the search-space is to allocate

reproductive opportunities to individuals in proportion to their fitness relative to the

other creatures in the population. By doing this, good schemata receive an expo-

nentially increasing number of chances to reproduce in future generations. Holland

also showed that as each individual contains many different schemata, the number of

schemata effectively being processed in each generation is of the order n3 (n being

the population size), this property is called implicit parallelism [16].

The traditional design focus for crossover operators has been combination, ran-

dom parts (schemata) from both parents are crossed into an offspring solution. This

design basis is a legacy of the original schema theorem. The focus is on implicit

parallelism and the idea of sampling of schemata, particularly low-order schemata

(building blocks) [81], with crossover viewed as the predominant operator. However,

it should also be noted that crossover and mutation do not operate independently

of one another and interact with the other elements of an evolutionary system [46].

In relation to mutation many biologists see it as the main source of raw material

for evolutionary changes [111]. This theory moves away from the traditional view

that low mutation rates are used in GAs as they tend to lead to an efficient search

of the solution and that high mutation rates result in diffusion of search effort and

premature extinction of favourable schemata in a population. Mutation is primarily
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useful for retrieving valuable schemata, this implies the belief that the mutation rate

ought to be set so that the rate at which highly fit schemata are accidentally deleted

from the population is roughly equal to the rate at which mutations introduce new

desirable schemata. Implicit in this view is that it is assumed there is no need to

find highly fit schemata that are not present in the initial population, or that cannot

be generated from that population by repeated breeding operations. Put another

way, this view assumes that nearly all the useful gene alleles are present in the initial

population.

While the Schema theorem indicates that selection emphasises fit schemata and

some of these schemata are destroyed by genetic operators, the overall lesson is that

low order schemata of short defining length, that is, highly fit schemata which are not

too disrupted by genetic operators tend to increase from generation to generation.

The schema theorem can also be written as

m(H, t+ 1) ≥ m(H, t)φ(H, t)[1− ǫ(H, t) (2.2)

which is independent of the particular choice of GA operators. Interpretation is also

made easier as the effect of selection is isolated by the reproduction ratio φ(H, t) and

the effect of the genetic operators is given by the distribution factor ǫ(H, t). A schema

can grow or decay according to the net growth factor φ(H, t)[1− ǫ(H, t)] [38].

The Building Block Hypothesis argues that the power of a GA lies in being able to

find good building blocks [67]. These building blocks are schemata of short defining

length consisting of bits that work well together and tend to improve performance

when incorporated into an individual. A successful coding scheme encourages build-

ing blocks to form by ensuring that, firstly, related genes are close together on the



Chapter 2: Genetic Algorithm
Fundamentals & Performance Measurement 25

chromosome and secondly, there is little interaction between genes. Interaction (also

called epistasis) between genes means that the contribution of a gene to the fitness

depends on the fitness of other genes in the chromosome. Epistasis refers to any kind

of strong interaction among genes. There is always some epistasis between genes in

multimodal fitness functions, which are important in GA research as unimodal func-

tions can be solved using simpler methods. If both related genes are close together

on the chromosome and little interaction between genes is observed, then GAs will

be as efficient as predicted by the schema theorem. However, genes may be related

to one another in ways that do not allow all the closely related genes to be located in

close proximity in the string. Also, if the designer does not know exactly the relation-

ship between the genes, this may prevent the creation of a successful coding scheme.

If there is little interaction between the genes on the chromosome then this implies

that related genes are close together on the chromosome. Suppose the contribution

to overall fitness of each gene was not dependent on any other genes, then it may

be possible to solve the problem by hillclimbing on each gene in turn. It is gener-

ally accepted that when designing the code schemes, one should attempt to conform

with Goldberg’s building block hypothesis so as to ensure that the GA will perform

effectively [69].

2.4 Exploring the Search Space

To illustrate the mechanism of a GA in searching a fitness landscape let us see

how a GA can sample hyperplane partitions. Consider a 3-dimensional space, if a

problem is encoded with 3 bits, this can be represented as a cube with string 000 at
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the origin. The cube’s corners are numbered bit strings and all adjacent corners are

labelled by bit strings that differ by exactly 1 bit. The front plane of the cube contains

all points which begin with 0. A “*” can be used as a “don’t care” or wild card match

symbol, by doing this the plane can be represented by the string 0** [133]. Strings

which contain “*” are called schemata, each schemata corresponds to a hyperplane

in the search space. The hyperplane refers to the number of actual bit values that

appear in the schema. For example, 1** is the order-1 while 1**1******0** would be

of order-3. In other words the order of a schema is the number of non “*” symbols

it contains. The defining length of a schema is the distance between the outermost

non -“*” symbols, i.e. 10** has a defining length of 2, *0*0 has a defining length of

3, while **1* has a defining length of 1.

A 4-dimensional space can be represented by a cube suspended inside another

cube. The points in the inner cube (the 3-dimensional cube) and the outer 4-

dimensional cube are labelled the same. Next, prefix the inner cube label with a

1 bit and each outer cube with a 0 bit, thus allowing the creation of adjacency in

strings which are different by 1 bit. The outer cube now corresponds to the hyper-

plane 0*** while the inner cube corresponds to the hyperplane 1*** [95]. Thus *0**

identifies the subset of points that corresponds to the front of both cubes, and the

order-2 hyperplane 10** corresponds to the front of the inner cube [199].

A bit string corresponds to a particular schemata if it can be made from the

schemata by replacing the “*” with the appropriate bit value [199]. Bit strings match-

ing a certain schemata are part of the hyperplane partition represented by that specific

schemata [199]. “Every binary encoding is a chromosome which corresponds to a cor-
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ner in the hyperplane and is a member of 2L − 1 different hyperplanes, where L is

the length of the binary encoding” [199]. The string of all “*” symbols relates to the

space itself and is not counted as a partition of the space [95]. Each string has L

positions in it and each position can be either a bit value contained in the string or

the “*” symbol [199].

Optimisation algorithm often uses two mechanisms to find a global optimum; ex-

ploration, which investigates new and unknown areas in the search space [16], and

exploitation which makes use of information gained from locations previously vis-

ited, in order to locate better locations [16]. These requirements of exploration and

exploitation are contradictory, therefore a good search algorithm must find a compro-

mise between the two [16]. A random search can be used for exploration but does no

exploitation. On the other hand a ‘hillclimbing ’ method excels at exploitation, but

carries out very little exploration. Combining exploitation and exploration can be

effective but a balance needs to be struck between the two, which can be difficult to

achieve, i.e. what amount of exploitation is performed before giving up and exploring

further [16]. A GA combines both exploitation and exploration at the same time [95].

Although this is true in theory, there are a number of problems which arise in

practice. These problems occur due to certain assumptions made for simplification

purposes. Some of these assumptions include: an infinite population size; the fitness

function accurately reflecting the problem and also that there in little interaction

between genes in a chromosome [16]. The infinite population size can never be satisfied

in practice, because of this the performance of a GA will be subject to stochastic errors

[16], i.e. genetic drift (which is also present in nature).
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This implies that even if there were no selection pressure, in other words a constant

fitness function, members of a population will still manage to converge to some point

in the solution space due to the accumulation of stochastic errors [16]. If a gene

becomes predominant in a population, there is every likelihood that it will become

more predominant in the next generation. There is also a chance that it will become

less predominant in the next generation. But if the increase in predominance is

sustained over a number of successive generations, and the population is finite, then

a gene can spread to all creatures in a population. Once a gene has converged in

this manner, it is fixed i.e. crossover cannot introduce new gene values [16]. The

knock on effect is that genes eventually becomes fixed. Thus the rate of genetic drift

provides a lower-bound on the rate at which a GA can converge towards the correct

solution [16]. In other words if a GA is to exploit gradient information in the fitness

function, the fitness function must provide a slope sufficiently large to counteract

[16] any trend towards genetic drift. The rate of genetic drift can be reduced by

increasing the mutation rate. However, if the mutation rate is too high, the search

becomes effectively random; therefore the gradient information in the fitness function

is not exploited [16].

2.5 The Fitness Landscape

Shortly after the first mathematical models of Darwinian evolution were devel-

oped, Seawall Wright [203] recognised a property of population genetic dynamics,

that is, when fitness values of genes are evaluated, the genetic makeup of a popula-

tion can evolve into multiple domains of attraction. The specific fitness interaction is
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known as epistasis, where the effect on fitness from altering one gene depends on the

allelic state of other genes. Epistasis makes it possible for the population to evolve

towards different combinations of alleles, depending on its initial genetic combination.

Thus, Wright discovered a conceptual link between a microscopic property of organ-

isms (fitness interactions between genes) and a macroscopic property of evolutionary

dynamics, multiple population attractors in the space of genotypes [2]. Implicit in

this idea is a collection of genotypes arranged in an abstract metric space, with each

genotype next to those other genotypes which can be reached by a single mutation, as

well as a value assigned to each genotype [177].

Wright illustrated this by using the metaphor of a landscape of multiple peaks, in

which a population would evolve by moving up hill until it reached its local fitness

peak. This visualisation of the adaptive landscape is the term used to describe multiple

domains of attraction in evolutionary dynamics. Wright looked specifically at how

populations could get away from local fitness peaks to higher ones through stochastic

fluctuations in small population subdivisions. This was one of the first conceptions of

stochastic processes for the optimisation of multimodal functions [2]. Multimodality

or the number of peaks in a search space, is an important characteristic of that

particular search space [110].

The idea of a fitness landscape is used as a framework for reasoning about evo-

lution. Biological organisms can be characterised by their genotype, which is the

genetic ‘encoding’ of the organism, or their phenotype, which is the actual form and

behaviour of the organism. A fitness value can be assigned to each phenotype, which

denotes its ability to survive and reproduce [186]. Evolution can be viewed as a
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process that searches, by means of genetic operators like crossover and mutation, a

fitness landscape of possible genotypes, looking for genotypes that encode highly fit

phenotypes [44]. Evolution searches for solutions, encoded in genotypes, to find fit

organisms which are capable of reproduction. Every genotype will have a relative fit-

ness assigned to it. This is determined by a fitness function. The fitness landscape is

then constructed by assigning the fitness values of the genotypes to the corresponding

points in the genotype space. To visualise this picture, each point in the genotype

space is given a ‘height’ according to its fitness. From this a ‘mountainous’ landscape

is formed, where the highest peaks designate the best solutions. A local optimum,

or peak, in such a landscape is defined as a point that has a higher fitness than all

its neighbours [97]. In evolutionary computation the notion of evolvability refers to

the efficiency of evolutionary search. It has been shown that the structure of a fitness

landscape affects the ability of evolutionary algorithms to search. Three characteristics

specify the structure of landscapes. These are the landscape smoothness, ruggedness

and neutrality. The interplay of these characteristics plays a vital role in evolutionary

search [104]. Much research has been carried out examining the relationship between

the landscape structure of problems with known difficult and GA performance, in-

cluding Grefenstette [81], Lipsich [120], Manderick [127], Goldberg [66] and Horn [98],

facilitating the use of well understood fitness landscapes the be used in the empirical

analyses of GAs.

To describe fitness landscapes, a notion of a distance between genotypes is needed.

Genotypes are codings, and different codings can cause different distance measures.

Furthermore, there is often more than one distance measure, or metric, which can be
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defined for one and the same coding. Usually, a coding in the form of bit strings is

used. The Hamming distance [83] between two bit strings is defined as the number

of corresponding positions in these bit strings where the bits have a different value.

So, the distance between 010 and 100 is two, because the first and second positions

have different values. A normalised Hamming distance can be defined by dividing

the Hamming distance between two bit strings by the length of these bit strings. By

adopting this approach, the distance measure is independent of the length of the bit

strings. A normalised Hamming distance of 0.5, for example, means that half the bits

of two bit string have a different value [96].

2.6 Measuring GA Performance

In order to evaluate the changes in variation and variability associated with the

proposed layered genotype-phenotype map, a variety of problem landscapes were used

in the dissertation. The problems chosen consist of both static and dynamic land-

scapes. The static problems include variations of the OneMax problem [159], various

deceptive landscapes [198, 73] and De Jong’s test suite [43]. The dynamic landscapes

used include a number of changing deceptive landscapes [87] and a changing Sphere

model landscape [94]. A description of the various problem landscapes used is given

in this section.
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2.6.1 Static Landscapes

Deceptive Landscapes

Bethke [20], examined the identification of problem difficulty within GAs. Bethke’s

approach revolved around converting the problem in question into a domain where a

range of small-order schemata averages were easier to establish. With this approach

predicting whether or not small highly fit schemata would eventually find the global

optimum was made easier. Bethke converted problems into the domain of Walsh

function coefficients. By adopting this approach an order-k schema’s average fitness

is easier to conclude as originally a large number of individuals in a population would

have to be examined, whereas reviewing only 2k Walsh coefficients will produce same.

Bethke hypothesised that if the scale of the Walsh coefficients decreased quickly, in

association with increasing order, then small schemata would determine the search

space and the problem would be easy for the GA. Bethke, by reversing his transfor-

mation, could design problems which were difficult for a GA, as he hypothesised that

the higher the minimum order of a schemata required to locate the global optimum,

the more difficult the problem. Bethke also recognised misleadingness and isolation

and pointed out that with GA-hard functions “not only must a GA-hard function

be epistatic, but the epistasis must be misleading” [20]. In other words short, high-

performance schemata must point toward poor areas of the space. In many ways

Bethke’s work paved the way for the development of test functions which allowed for

the evaluation of GAs.

With regard to testing the performance of GAs, a number of authors have used

a class of problem considered GA-Hard [70]. A problem is considered hard in many
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cases if it is difficult for the GA to find the optimum; in other words we are looking for

a single optimum point surrounded by points which have a relatively low fitness level.

Problems are often created by taking advantage of the GA so as to allow selection

to deliberately lead the search away from the optimum. By using a binary encoding

of a solution, GAs can search complex landscapes by sampling hyperplanes in an n-

dimensional hypercube. GAs alter the rates of sampling of hyperplanes in relation to

encodings of the solution space. In relation to deceptive problems hyperplanes drive

the search away from the global optimum and towards a local optimum [70].

Deceptive functions can be viewed as having two optima: a global optima, located

at position 1, 1, . . . 1 and a local optima, located at position 0, 0, . . . 0. If the fitness

value of the global optimum is fglobal = x and the fitness value of the local optimum

is flocal = x − 1, then the remaining points in the landscape are given fitness values

based on their distance from one of the optima in a way that the basin of attraction

for the global optimum is significantly smaller than the basin of attraction of the

local optimum. In other words the search is designed to draw you away from the

global optimum. It is this feature which makes the problem deceptive. Many authors

have used deceptive landscapes as a test bed for GAs including Goldberg [68, 72, 50],

Kargupta [105], Grefenstette [80], Jones [102, 103] and Dasgupta [40] to name but a

few.

The Building Block hypothesis is one of the fundamental theories of GAs. By

combining highly fit low-order schemata into higher-order schemata a GAs seek near-

optimum performance. However, highly fit low-order schemata may not combine to

form highly fit high-order schemata. Goldberg [65], by devising a 2-bit problem where
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the combination of the best order-1 schemata did not produce the global optimum,

introduced the notion of deception to mislead a simple GA (SGA). Goldberg con-

structed this minimal deception problem (MDP) by analysing the schema averages

directly, as opposed to using Walsh coefficients similar to Bethke, and analysed how

the GA handled the problem. Goldberg’s results indicated that the GA could over-

come this level of problem difficulty, but occasionally a loose ordering of this problem,

or large defining lengths, could combine with a poor starting population to frustrate

the GA. Deceptive problems cause difficulties for GAs because firstly, the global solu-

tion is isolated and secondly, information deceives the GA to locate sub-optimal solu-

tions. By applying the methodology developed by Goldberg to higher-order building

blocks, a class of problems described as deceptive problems has emerged. Problems

of bounded difficulty, which have become effectively the test bed for GAs, resulted

from the ability of deceptive problems to be set within larger problems.

3-bit Deceptive Problem - Test 1 & Test 3

A fully deceptive problem of order-N can be viewed as being deceptive when all

of the lower-order hyperplanes lead away from the global optimum and towards a

deceptive attractor [198]. To illustrate deception, let us consider a fully deceptive

order-3 function, where the information about the hyperplane which the order-1 and

order-2 schemata represent in the search space direct the search away from the global

optimum towards a deceptive attractor [198]. If the bits 111 represent the global op-

timum and the bits 000 represent the deceptive attractor, then a full order-3 deception

would be similar to that defined by Goldberg, Korb and Deb [73] which is illustrated
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Order-3 Problem

String Fitness String Fitness
f(000) 28 f(010) 22
f(110) 0 f(101) 0
f(001) 26 f(100) 14
f(011) 0 f(111) 30

Table 2.1: Deceptive Order-3 Problem - Fitness Values

in Table 2.1 and shows the fitness values for each bit string.

10 3-bit Fully Deceptive Problems - Test 1, Test 3 & Test 5

One failing of the 3-bit fully deceptive problem is that it is too small to really

demonstrate a search strategy. The 10 3-bit problem as outlined by Goldberg [73]

expands the 3-bit problem into 10 3-bit deceptive order-three sub-functions. The

effect of this is to make it difficult for the SGA to solve as it tends to converge

prematurely, with the sub-functions being drawn towards the deceptive attractor

rather than the global optimum [73]. However, in Goldberg’s 10 3-bit function each

3-bit sub-function is associated with the adjacent 3-bit sub-function. In this way the

first sub-function is associated with bits one to three and the second sub-function is

associated with bits four to six and so on. This function is relatively difficult using

most functional optimisation standards and the search space is quite large.

To increase the level of difficulty, a loose ordering has been included, which makes

the problem fully deceptive. This is achieved by increasing the defining length to

twenty, where the defining length is the maximum distance between two defining

symbols in a schema. The effect of this is to make it difficult for the simple GA to

solve as it tends to converge prematurely, with the sub-functions converging on 000
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rather than the optimum of 111 [73]. For example, rather than having bits one to

three linked together to create a sub-function, increasing the defining length to twenty

means our sub-function now consists of bits one, eleven and twenty one for the first

sub-function and bits two, twelve and twenty two for the second sub-function etc. A

count of the number of sub functions discovered throughout the search is carried out,

with ten being the maximum number achievable. By increasing the 3-bit problem into

ten 3-bit sub-functions, as outlined, we create a 10 3-bit fully deceptive landscape

which through the increase in defining length for each sub-function, dramatically

increases the level of problem difficulty.

30 3-bit Fully Deceptive Problems - Test 5

Similarly by increasing the ten 3-bit problem into 10 3-bit sub-functions, as out-

lined, we create a 30 3-bit fully deceptive landscape which through the increase in

defining length for each sub-function, thereby dramatically increasing the level of

problem difficulty. The 30 3-bit fully deceptive problem is an extension to the 10

3-bit fully deceptive problem designed to increase the problem difficulty as the search

space is increased, this approach to increasing difficulty was also adopted by Pelikan

[146].

30-bit & 90-bit OneMax Problem - Test 5

The OneMax Problem [159] is a simple problem consisting of maximizing the

number of ones in a bit-string. Formally, this problem can be described as finding a

string ~x = {x1, x2, . . . , xN}, with xi ∈ {0, 1}, that maximizes the following equation:
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F (~x) =

N
∑

i=1

xi (2.3)

As the OneMax bit counting problem is a relatively easy problem landscape two

variations were used in Test 5, a 30-bit OneMax problem and a more difficult 90-bit

OneMax problem.

De Jong’s Testsuite - Test 2

De Jong [43] created test functions and performance measures to determine the ef-

fect various modifications to the parameters would have on the GA. Five test functions

were designed to access the ability of a simple GA (SGA) over various landscapes.

The functions were chosen by De Jong because they represented many common diffi-

culties found in optimisation problems. De Jong’s test suite was originally designed

as a minimising problem and can easily be changed into maximising problems. The

test functions accessed SGAs over problems which were continuous or non-continuous,

convex or non-convex, unimodel or multimodal, quadratic or non-quadratic, deter-

ministic or stochastic, and finally low-dimensional or high-dimensional. With this

test bed created, De Jong’s experiments involved running a SGA and altering its

parameters. The results distinguished between what De Jong termed on-line and

off-line optimisation. On-line referred to a problem which required a continuing level

of optimisation, whereas off-line referred to a problem where the solution discovered

after a predetermined amount of time could be used.

By running a SGA and altering its parameters over the test bed, De Jong’s results

exhibited a number of conclusions. Firstly, off-line results were more successful with
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large populations while on-line performances were more successful with smaller pop-

ulations. The results also indicated that higher mutation rates, Pm > 0.1 caused the

SGA to behave in a manner similar to a random search; a probability of crossover,

Pc = 0.6 proved a good balance between on-line and off-line performances and over-

lapping populations resulted in poorer performances. While investigating variants of

the SGA, De Jong found that schemas with less noise, which implemented fitness-

proportionate selection more stringently, outperformed roulette wheel selection. With

regard to experiments relating to recombination operators, De Jong found that multi-

ple point crossover operators which caused more disruption proved detrimental to the

SGA. De Jong’s experiments, methodologies and conclusions provided a framework

for many researchers to examine GAs [78, 160, 157, 123] etc.

The Sphere Function (De Jong’s Test Suite f1)

The first function (f1) is relatively easy to optimise as it is smooth, convex and

unimodal. The minimum is located at the centre of the N-dimensional sphere and

there are no local minima. This function is normally used to measure the efficiency of

a particular algorithm. A graphical representation of the generalised Sphere function

is shown in Figure 2.1 and the function has the following definition:

f1 =

2
∑

i=1

x2

i (2.4)

where

−5.12 ≤ xi ≤ 5.12
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Figure 2.1: The Sphere Model.

Rosenbrock’s Function (De Jong’s Test Suite f2)

The second function (f2), Rosenbrock’s function, is a frequently used optimisa-

tion problem [166] and is also known as Rosenbrock’s valley or Rosenbrock’s banana

function.

Figure 2.2: Rosenbrock’s Function.

It is a two-dimensional function containing a deep valley, shaped in a parabola.

Rosenbrock’s function, also known as Rosenbrock’s Saddle function is viewed as being

a relatively difficult minimisation problem, as the algorithm is dealing with repeatedly
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changing direction of the search and the difficulty lies in its ability to converge. Figure

2.2, illustrates Rosenbrock’s function and the function has the following definition:

f2 = 100(x2

1
− x2)

2 + (1− x1)
2 (2.5)

where

−2.048 ≤ xi ≤ 2.048

The Step Function (De Jong’s Test Suite f3)

Figure 2.3: Step Function.

The third function (f3), the Step function, exhibits many plateaus and represents

problems with flat surfaces. This class of problem proves difficult for many algorithms

as they don’t provide information as to the most advantageous direction. Flat surfaces

are obstacles for optimisation algorithms, as it is difficult to decide which direction

to go without having any information available. Figure 2.3 shows a plot for the Step

function. The Step function has the following definition:

f3 =
5
∑

i=1

⌊xi⌋ (2.6)
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where

−5.12 ≤ xi ≤ 5.12

Quadratic Function with Noise (De Jong’s Test Suite f4)

The fourth function (f4) is a quadratic function which includes Gaussian noise.

This function is designed to test the behaviour of an algorithm in the presence of noise.

The function’s global optimum depends on the expectation value of a random variable,

and also includes several randomly distributed local minima. In this dissertation the

experiments use a 30-dimensional function which contains noise to ensure that points

return a different value each time they are evaluated. The plot for the quadratic

function without noise is illustrated in Figure 2.4. The quadratic function with noise

is defined as follows:

f4 =
30
∑

i=1

(ix4

i +Gauss(0, 1)) (2.7)

where

−1.28 ≤ xi ≤ 1.28

Figure 2.4: Quadratic Function.
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Shekel’s Foxhole Function (De Jong’s Test Suite f5)

The fifth and final function (f5), Shekel’s Foxhole, is a multidimensional, multimodal,

continuous, deterministic function which contains many local optima. The difficulty

lies in the algorithms ability not to get trapped in a local optima. This 2-dimensional

function contains 25 different foxholes, each varying in depth, surrounded by relatively

flat surfaces. Shekel’s Foxhole function has the following definition:

f5(xi) = 0.002 +

25
∑

j=1

(

1

j
+

2
∑

i=1

(xi − aij)
6

)

(2.8)

where

−65.536 ≤ xi ≤ 65.536

Figure 2.5: Shekel’s Foxholes.

2.6.2 Dynamic Landscapes

In relation to classifying dynamic landscapes, De Jong [45] proposed four different

categories, each relating to real world problems. The first category involves drifting
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landscapes, where the topology changes little by little over time. The second cate-

gory involves landscapes that undergo significant morphological changes with peaks

of high fitness become areas of low fitness and areas of the landscape which were

uninteresting become new areas of high fitness. The third category proposed by De

Jong involves landscapes with cyclic patterns and the fourth and final category are

landscapes where changes are abrupt and discontinuous [45]. Branke [23] used the

following criteria to characterise changing environments: frequency of change; sever-

ity of change; predictability of change and cycle length or cycle Accuracy. In this

dissertation the changing landscape can be viewed as a combination of De Jong’s

fourth category with the change being abrupt and discontinuous and Brank’s severity

of change characterised by the distance between the old and new optimum.

Over the past number of years there has been a significant amount of research into the

performance of EAs in tracking a moving optimum in dynamic environments including

Cobb [31], Grefenstette [32, 79], Dasgupta [41], Bendtsen [19], Branke [22, 24, 23, 25],

Kubalik [115]. Techniques emerging from past research can broadly be classified into

two categories, with the first examining the population in relation to variation and

exploration and the second which uses memory to exploit past information [85]. The

focus of this dissertation in relation to dynamic environments lies with the first cat-

egory, examining the balance between convergence and diversity.
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Changing Landscape Problems

Natural selection requires diversity to be present in a population for adaptation

to take place [122]. Diversity is critical for GAs particularly when the landscape is

evolving as recombining a homogeneous population will not enable the GA to locate

the new optimum [135]. To examine the performance of any GA over a changing

landscape, once the GA reaches a predefined point during the search, the fitness

function is altered, which has the effect of changing the landscape and creating a new

global optimum [31]. By doing this, the focus is placed on the adaptive qualities of

the GAs in response to altering the target of the search and outlines the algorithm’s

ability to maintain a balance between exploration and exploitation. Table 2.2, outlines

the changes made to the fitness function shown and shows the new deceptive attractor

111, with 000 being the new global optimum. Again, the low level building blocks lead

the search away from the optimum, in other words all of the low-order hyperplanes

direct the search to the deceptive attractor [198].

10 3-bit Changing Fully Deceptive Problem - Tests 1, 3 & 5

The 10 3-bit changing fully deceptive, loosely ordered problem, described in 2.6.1,

incorporates the 3-bit deceptive problem as described in [73]. However the fitness

function changes at a predefined point in the search, altering the landscape. The

changes to the fitness are outlined in Table 2.2, with Table 2.2a outlining the fitness

values before the landscape change and Table 2.2b illustrating the fitness values after

the change.
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Deceptive Order-3

String Fitness String Fitness
f(000) 28 f(010) 22
f(110) 0 f(101) 0
f(001) 26 f(100) 14
f(011) 0 f(111) 30

(a) Deceptive Order-3 Problem

Reversed Order-3

String Fitness String Fitness
f(000) 30 f(010) 0
f(110) 26 f(101) 22
f(001) 0 f(100) 0
f(011) 14 f(111) 28

(b) Reversed Deceptive Order-3 Problem

Table 2.2: Order-3 Deceptive Problem & Reversed Order-3 Problem

30 3-bit Changing Fully Deceptive Problem - Test 5

The 30 3-bit changing fully deceptive, loosely ordered problem, outlined in 2.6.1,

is an extension of the 10 3-bit fully deceptive problem. The increase in the solution

space is designed to make the landscape more difficult to search. The 3-bit fitness

values associated with this problem are those shown in Table 2.2.

Changing Sphere Model Problem - Test 4

The changing Sphere model [94], is the same as the Sphere model (f1) discussed

previously (2.6.1) with the addition that the fitness function is altered during the run.

The change is designed to test the GAs ability to adapt and the details of the Sphere

Model Changing Environment are as follows:

f2( ~x(t)) =











∑n
i=1

x2

i (t) : t mod a even

∑n
i=1

(xi − b)2 : t mod a odd

(2.9)

−5.12 ≤ xi ≤ 5.11

a = 1500 generations ; b = 4
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min(f2) =











f2(0, . . . , 0) : t mod a even

f2(b, . . . , b) : t mod a odd











= 0

4-bit Deceptive Changing Landscape - Test 6 & Test 7

In this dissertation a number of experiments are also conducted over fully deceptive

Order-4 landscapes [198], which when reversed, allows the local optimum to become

the global optimum. Figure 2.6a graphically illustrates the landscape of the 4-bit

deceptive problem [198], with the x and y co-ordinates indicating the location on

the grid. To analyse the adaptive qualities of both GAs, the landscape reverses at a

predefined number of generations, with Figure 2.6b illustrating the landscape after

the change and shows the global optimum changing to become the local optimum and

visa-versa.
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(b) 4-bit Reversed Deceptive Landscape

Figure 2.6: 4-bit Changing Deceptive Landscape

Table 2.3 shows the fitness values associated with each 4-bit string, with Table 2.3a
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Deceptive Order-4

String Fitness String Fitness
f(0000) 28 f(0001) 26
f(0010) 24 f(0011) 18
f(0100) 22 f(0101) 16
f(0110) 14 f(0111) 0
f(1000) 20 f(1001) 12
f(1010) 10 f(1011) 2
f(1100) 8 f(1101) 4
f(1110) 6 f(1111) 30

(a) Deceptive Order-4 Problem

Reversed Deceptive Order-4

String Fitness String Fitness
f(0000) 30 f(0001) 6
f(0010) 4 f(0011) 8
f(0100) 2 f(0101) 10
f(0110) 12 f(0111) 20
f(1000) 0 f(1001) 14
f(1010) 16 f(1011) 22
f(1100) 18 f(1101) 24
f(1110) 26 f(1111) 28

(b) Reversed Deceptive Order-4 Problem

Table 2.3: Deceptive & Reversed Deceptive Order-4 Problem - Fitness Values

outlining the fitness values before the landscape change and Table 2.3b outlining the

fitness after the landscape changes.

2.7 Chapter Summary

This chapter gave a brief overview of GAs and examined the workings behind GAs,

describing Schema, the Schema theorem, traditional variation operators, implicit par-

allelism, the building block hypothesis, epistasis and genetic drift. Following this, the

chapter discusses the search space and the idea of a fitness landscape, outlining a num-

ber of well known static and dynamic problems describing their use in evaluating GA

performance. The problem landscapes outlined above include static deceptive land-

scapes, changing deceptive landscapes, De Jong’s test suite and a changing Sphere

Model landscape. These landscapes were chosen as they are well understood and

are commonly used to evaluate GAs. By using the landscapes described the pro-

posed neutral genotype-phenotype map contained in the MGA was evaluated on a
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variety of problems, including GA-Hard problems. The problems chosen contained a

mix of characteristics, including: continuous or non-continuous problems; convex or

non-convex problems; unimodal or multi-modal problems; quadratic or non-quadratic

problems; deterministic or stochastic problems and finally low-dimensional problems

or high-dimensional problems. The next chapter moves on to examine the concept of

Neutral theory and neutrality, describing neutrality as found in nature and various

ways in which synthetic neutrality is implemented in artificial systems.



Chapter 3

Neutrality

3.1 Introduction

Sewall Wright noticed that many random changes in the frequency of alleles oc-

curring in a population were not related to selection [203]. His observations indicated

that this genetic drift was an important component in the evolutionary process. Neu-

tral theory as proposed by Kimura [111] which offered an alternative to the Darwinian

view, states that the mutations involved in the evolutionary process are neither advan-

tageous nor disadvantageous to the survival of an individual, and that most mutations

are caused not by selection, but rather by random genetic drift. However Kimura [112]

pointed out that although natural selection does play a role in adaptive evolution,

only a tiny fraction of DNA changes are adaptive. The vast majority of mutations

are phenotypically silent.

By adopting the principal of Darwinism, simple genetic algorithms (SGAs), can

be viewed as implementing the process of evolution without containing any explicit

49
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neutral mutations. In other words, each mutation is either an advantage or a dis-

advantage to the individual in terms of fitness, with selection then propagating the

fitter individuals. As the search progresses, exploration-exploitation ratios decrease

as the population converges. If we are to implement a GA based on the principles of

neutral theory then, neutrality needs to be introduced. Neutrality can be viewed as

a situation where a number of different genotypes can represent the same phenotype.

This chapter reviews the literature associated with neutral theory, neutrality in

biology and synthetic neutrality as implemented in artificial systems. The chapter is

organised as follows: Section 3.2 examines neutral theory and neutrality, discussing

the development of neutral theory from a biological perspective. Section 3.3 looks at

the use of synthetic neutrality and examines how the concept of neutrality has been

used in artificial systems and GAs, beginning with neutrality through the use of vari-

ous fitness landscapes and then neutrality implemented through genotype-phenotype

mappings. Finally, Section 3.4 concludes giving a summary of the chapter and pro-

vides an introduction to Chapter 4.

3.2 Neutral Theory & Neutrality

Neutral Theory as discussed by Kimura [111], argues that mutation, not selection,

is the main force in evolution. He describes how a mutation from one gene to another

can be viewed as being neutral if it does not affect the phenotype, as the number of

different genotypes which store genetic information is far greater than the number

of phenotypes. This implies that the representation from genotype to phenotype

must incorporate an element of redundancy so that neutral mutations are possible.
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A mutation can be viewed as neutral if it changes the genotype but doesn’t impact

on the phenotype.

Previous work on evolution revolved around observed changes at a phenotypic

level. Having access to molecular data, Kimura was able to experiment at a level

not previously possible. As a result of examining the evolutionary rates of nucleotide

substitutions, Kimura identified two types of gene mutations: replacements of one

nucleotide base for another [112] and structural changes consisting of deletions and

insertions of one or more nucleotide’s bases as well as transpositions and inversions

of larger DNA segments [112]. The results of Kimura’s investigations led to the devel-

opment of his theory of molecular evolution: . . . a majority of nucleotide substitutions

in the course of evolution must be as a result of random fixation of selectively neutral

or nearly neutral mutants rather than positive Darwinian selection, and many of the

enzyme polymorphisms are selectively neutral and maintained by the balance between

mutational input and random extension [112].

Although originally viewed as being anti-Darwinian, Kimura [112] stated that

although natural selection is important in evolution, the number of DNA changes

which are adapted in evolution are small, with the vast majority of mutations being

phenotypically silent. Nei [139] argues that all evolution must be non-Darwinian

and as phenotypic characters are under the control of DNA sequences, molecular

and phenotypic evolution must take place under a similar non-Darwinian approach.

Nei also argues that the majority of morphological evolution is as a result of neutral

or nearly neutral mutation and therefore mutation can be considered the main force

behind evolution at both the molecular level and the phenotypic level [139]. Following
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Kimura, work by King and Dukes [113] describes how much of the evolution of proteins

is down to neutral mutations and genetic drift.

Many studies focused on neutral theory, including Schuster [60, 163, 164], Huynen

[100, 101], Reidys [149] and Shipman [167] all illustrating that by introducing re-

dundant representations and thus neutral mutation, the connectivity between fitness

landscapes can be altered. In other words, when a number of genotypes represent

the same phenotype, they can be viewed as a neutral set and in turn alter the way

in which a population explores the search space.

Neutral networks are normally viewed a collection of elements which are separated

from one another by one Hamming distance. In this dissertation neutral networks

are viewed as a set of points of similar fitness in the search space and starting from

any given point within a set, an individual can reach any other individual in the set

through one or more mutations, without having to leave the set [147]. Reidys et

al. [150] suggest that neutral networks can be constructed by combining identical

phenotype structures, so long as the structures exceeded a given threshold value.

Their work was based on RNA secondary structures as they incorporate a high level

of redundancy because of the existence of a greater number of sequences compared to

structures. The mapping from RNA sequence to secondary structure can be described

as a mapping from sequence space into shape space [164].

Schuster et al. [164, 163], examined mappings from an RNA sequence to an

RNA secondary structure and concluded that in order to understand evolution, the

genotype-phenotype mapping needs to be examined and that neutrality was a feature

which can assist evolution. In Shipman [167] the author used random neutral walks.



Chapter 3: Neutrality 53

He began with the random generation of a solution, then created a neighbourhood

and selected a neutral neighbour that produces a distance increase from the starting

point. The process is repeated until no increase is available and the walk stops.

Fontana and Schuster [60] mapped an RNA sequence to a secondary RNA structure,

but discovered that during the evolutionary process there existed periods where no

adaptive progress took place, this was referred to as neutrality. Following this period

of neutrality, there were periods where there was a significant increase in adaptive

progress. This observation was important in terms of developing an understanding

with regard to neutrality in the evolutionary process, as they also noted that there

was activity, in that RNA shapes were changing during the level periods where there

was no apparent change in adaption.

Again looking at the mappings from RNA sequence to RNA secondary structures,

Huynen [100] showed that although there are large amounts of neutrality present in

the mapping, neutral paths exist, which allow for smooth exploration, with results

indicating that the number of new structures discovered by neutral mutations in-

creased linearly. Shipman et al. examined the properties of four redundant genotype-

phenotype mappings: voting mapping, cursor based mapping, cellular automata map-

ping and random Boolean network mapping. In all cases, redundancy was found to

be beneficial, meaning movement on the resulting neutral networks allowed for the

discovery of a larger number of phenotypes than would be the case for a direct encod-

ing. Thus, the probability of entrapment at local optima when using these mappings

would be reduced [168].

Nimwegen et al. [143] illustrated the evolution of the population through neutral
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networks, suggesting that migrating individuals do not randomly drift through them,

rather the majority tend to remain highly connected, that is with neutral neighbours

sharing the same level of fitness. This results in phenotypes which are quite resilient

against mutation. Wagner [191] took a similar view and suggested that neutrality

assisted in sheltering a system from the impact of mutation and argued that new

adaptations, provided by neutrality, can assist the search. Wilke et al. [201] argued

that neutrality provides robustness, with results indicating that genotypes closely

connected by mutation, have high selection rates and that these genotypes tend to

be located on flatter areas of the landscape.

3.3 Synthetic Neutrality

3.3.1 Types & Properties

In relation to neutrality in artificial systems, Weicker and Weicker [195] outlined

four types of redundancy; coding based redundancy, representation based redundancy,

conceptual redundancy and finally technical based redundancy. Coding based redun-

dancy occurs when the size of the search space differs in relation to the size genotype

space. The structure of the problem or the structure of the optimisation technique

leads to representation based redundancy. Conceptual redundancy is created as a

result of gene interaction and technical redundancy exists when a form of decoder is

used to alter or repair the solution. Their research focused on conceptual and tech-

nical redundancy, and used a binary encoding with a decoder method and a diploid

encoding as outlined by Dasgupta [42]. The study examines how neutrality changed
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local optima to plateau points for both the decoder method and the diploid encoding.

However, they also found the decoder method outperformed the diploid method.

Rothlauf and Goldberg [156] argued that the effects on evolutionary search of

redundancy are dependent on the nature of the redundancy and identified a number of

properties associated with redundant representations: uniform; synonymous ; locality

and connectivity, illustrating that the characteristics of the redundancy, which is

dependent upon one of the outlined properties, has the greatest impact on search.

The characteristics were defined as follows: uniform; a representation is considered

uniform if all of the phenotypes are represented by the same number of genotypes.

Synonymous; if the genotypes which represent the same phenotype are similar to one

another, the representation is considered synonymous (and non-synonymous if they

differ). Locality; if neighbouring genotypes correspond to neighbouring phenotypes,

a representation is viewed as having a high locality of reference. In other words

the locality of representation and synonymity are related; if neighbouring genotypes

correspond to neighbouring phenotypes, then the representation has a high locality

of representation and changes in the genotypes result in changes in the phenotype.

Connectivity; if the number of phenotypes which are accessible by single-bit mutation

from a given phenotype is high, then the connectivity of the representation is high

[154]. Therefore, where a representation is viewed as synonymously redundant, the

genotypes representing the same phenotype have the same properties and are next

to one another in the mutation space. However, with non-synonymously redundant

representations, as genotypes representing the same phenotype may be quite different

from one another, leaving evolutionary search to operate like random search meaning
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genetic operators will not function properly, thereby resulting in a lower performance

[154].

With a redundant representation, a phenotype’s phenotypic neighbourhood cor-

responds to the phenotypes which are reachable from the given phenotype by a single

mutation of the genotype representing it [35]. Connectivity relates to the number of

phenotypes which make up the phenotypic neighbourhood. With a non-redundant

binary representation with a phenotype of length l, if each reachable phenotype from

any another phenotype are all different, then the connectivity is l [35]. When defining

neutrality, linear representations specify a set of phenotypes reachable from a given

phenotype by a single mutation and all genotypes which represent the same pheno-

type reach the same set of phenotypes. However, when taking neutral theory into

account, then the accumulation of neutral mutations should lead to new paths being

located [35, 37]. A redundant representation which allows for the increase in connec-

tivity should be synonymous as if a non-synonymously redundant representation is

used, this will result in a random search which will have a negative impact on the

efficiency of the search [154].

3.3.2 Neutrality in Artificial Systems

Shipman [167] found neutrality to be advantageous where neutral networks (de-

fined by Harvey and Thompson [84] as points in a search space of equal fitness)

are distributed over the search space with a high degree of connectivity between

them. Shakelton [165] and Shipman [169] showed that neutrality could be introduced

through the use of genotype-phenotype mappings. They used five different mappings
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to illustrate this, static random mapping, trivial voting mapping, standard voting map-

pings, cellular automata mapping and a random Boolean network (RBN). The static

random mapping involved a genotype of length 30 being mapped to a phenotype of

length 16. The mapping was created at initialisation and remained static. The trivial

voting mapping, mapped three-bits from the genotype to one bit at the phenotype.

The mapping involved calculating what the majority of the three bits at the geno-

typic level represented. For example, if two of the three bits were of value 1, then the

genotype mapped onto value 1. Standard voting mapping varies from the previous

mapping in that a set of bits can overlap at the genotypic level. This implies that

when a mutation occurs many bits can be changed at the phenotypic level. Cellular

automata mapping, which includes a truth table, takes in three Bits and determines

the phenotypic representation. Finally, the RBN allows the three bits at the genotypic

level to be at any loci on the chromosome, meaning that the position needs recording

as well. The results obtained indicated that the amount of redundancy present was

significant in relation to evolution. Knowles and Watson [114] argue that previous

results on the benefits of including redundant encodings only show the increased con-

nectivity of the redundant space and is not a sound demonstration of the utility of

the technique [114]. They compared RBN encoding with direct encoding given an

appropriate choice of mutation rate over NK landscapes [109], H-IFF [194] and Max-

Sat [136], with results indicating that there was no longterm benefit in terms of the

level of fitness achieved, when neutrality is included [114].

Yu and Miller [205] used a Boolean function landscape and showed neutrality to

have a positive influence on evolutionary search. They examined explicit neutrality
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and argued that when mutation occurs on active genes, it is adaptive, suggesting this

comes from taking advantage of previous accumulated beneficial mutations within the

population. They also observed that mutation on inactive genes is neutral and doesn’t

affect the fitness value associated with the genotype. It does however maintain diver-

sity in the population and this can assist exploration. Yu and Miller [206] illustrated,

using a Boolean function induction problem, that there exists a relationship between

neutral mutations and beneficial search. Yu and Miller [207] also examined neutrality

using a OneMax problem. The authors used a representation which included active

and inactive genes. Each node in the genotype comprised of two genes. The first gene

was viewed as an input link and the second as a function value. The function value

is taken from a set {0, 1}, which either added 0 or 1 respectively. This representa-

tion allowed the measurement of neutral mutations using Hamming distance. Results

showed that for the OneMax unimodal landscape, neutrality had a positive effect on

search because it provides buffers to dampen the impact of destructive mutations.

Fonseca and Correia [57] used mathematical models to introduce two redundant

representations. They found that the connection between phenotypes tended to in-

crease as the number of redundant bits increased and that this trend in connectivity

between phenotypes, exists even when low amounts of redundancy are present. This

differed from the idea presented by Shipman [167], where in order to assist evolution,

large amounts of neutrality must be present in the population. It has also been argued

that landscapes with higher degrees of neutrality tend to have larger neutral networks

[107]. Fonseca and Correia [58] developed a polygenic redundant representation which

produced results similar to that of a non-redundant genotype-phenotype map. They
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expended the mapping to include pleiotropy, which allowed the connectivity to in-

crease proportionally to the chromosome length with a non-neutral representation.

Once they included error-control code theory to introduce neutrality they defined a

group of redundant binary representations implementing various levels of neutrality,

connectivity and locality.

Correia [35] extended this work using NK fitness landscapes and analysed the

impact of redundancy and neutrality on the performance of an evolutionary strategy

to gain a better understanding of how redundancy and neutrality affect evolutionary

search. The performance of a (1+1)-ES was applied to NK Fitness landscapes and

Markov chains were used to model its behaviour. A family of neutral network rep-

resentations inspired by error-control codes, using a NN(l, k) notation to signify a

neutral representation and NonNN(l, k) to denote a non-neutral representation. The

NonNNz(l
′, k) family with the same phenotype neighbourhood was used for compar-

ison in order to separate the neutrality from the effects of the neighbourhood common

to both representations. The findings indicated that neutrality seems to affect the

search less significantly than the phenotypic neighbourhood, resulting in delaying con-

vergence in comparison with the non-neutral representation but not having a major

effect on the algorithms long-term behaviour [35].

Further research by Fonseca and Correia [58] identify that linear encodings allow

the specification of a set of phenotypes reachable from a particular genotype through

single-bit mutations and that all genotypic representations of each phenotype are

equivalent with regards to searching as they all reach the same group of phenotypes.

But neutral theory [111] would suggest that changes to the connectivity between geno-
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types and phenotypes are possible. Rothlauf [154] argued that when a synonymously

redundant representation is used with a selectorecombinative GA, the connectivity

between the phenotypes is not increased. However, Correia [35] argues that there

are synonymously redundant representations that allow connectivity to be increased

between phenotypes, when compared to non-redundant representations. Reporting

that with their representation, connectivity increased with the amount of redundancy

and that high connectivity can be found with very little redundancy. This finding

contrasts with the idea that large amounts of neutrality are required to aid evolution

[167].

Continuing research by Correia [36] illustrated that the influence of neutrality

was separated from the effects of the neighbourhood common to both the neutral

and non-neutral representations presented. Concluding that neutrality seems to have

less of an effect on the search than that of the phenotypic neighbourhood, delaying

the convergence of the algorithm in comparison with the non-neutral landscape, but

significantly not changing the algorithm’s long-term behaviour. The author also found

that with the NK landscape presented, the representations did not present the values

for connectivity, synonymity or locality expected from current literature.

This in turn may help in relation to finding a demonstrably successful redundant

representations in EC [36], this research showed how the phenotypic neighborhood

induced by a representation influences the performance of an evolutionary algorithm.

Using a (1+1)-ES and the expected value of fitness, it was possible to conclude that

the phenotypic neighborhood induced by the representation seems to dominate the

behavior of the algorithm, affecting the search more significantly than neutrality.
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In general, neutrality delayed the convergence of the strategy, but did not seem to

significantly affect the long-term behavior of the algorithm. Among neutral represen-

tations in which phenotypic neighborhood contains the phenotypic neighborhood of

the non-redundant representation, some of them presented a performance systemat-

ically superior than others. This observation suggests that there are representations

that are more appropriate than others for the optimization of NK fitness landscapes.

3.3.3 Neutrality in GAs

Neutral representations have appeared in a number of GAs over the past number

of years. As a general rule, the introduction of neutrality into GAs can be divided into

two categories, neutrality through fitness landscapes and neutrality through genotype-

phenotype mappings.

Neutrality through Fitness Landscape

The first category, fitness landscapes which introduce neutrality through land-

scapes such as Kauffman’s NK landscape [109], Barnett’s NKp landscape [13], New-

man and Engelhardt’s NKq landscape [140, 141]; and Beaudoin et al.’s ND landscape

[18]. In Beaudoin’s landscape N represents the length of the genome andD represents

the neutral degree distribution, with the search space being divided into D neutral

networks. The aim of this is to control and examine the distribution of neutrality, as

they view this as being fundamental for evolution. By developing an ND deceptive

landscape, the authors found that as the level of difficulty increases, the addition of

neutrality was beneficial and when the level of difficulty decreased, neutrality didn’t
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assist in searching the search space.

Gerard et. al. [64] carried out comparisons of the NK, NKP and NKq fitness

landscapes and observed that when neutrality is added there were a number of major

differences associated with the distribution of neutral mutations. Smith et al. [171]

examined the behaviour of the population during phases where a population’s fitness

remained relatively constant, the neutral phase. They argued that the presence of

neutrality was not beneficial for evolutionary search. Smith et al. [172, 173] concluded

that the neutral phases were as a result of the presence of neutrality. Smith et

al. [170, 171] also proposed the use of fitness evolutionary portraits, obtained by

calculating the average evolvability of a population of equal fitness. Katada et al.

[108, 106] describe the relationship between evolution and neutrality in terms of two

periods, the transient period and the equilibrium period. During the transient period

fitness levels improve whereas during the equilibrium period, fitness levels remain

constant. They noted that the equilibrium period lasted longer than the transient

period. Van Nimwegan et al. [142] also examined the equilibrium period (stasis)

and the transient period where rapid change is observed. These are but a few of

the examples of the examination of neutrality through the use of landscapes. Others

examples include Lobo [121] Smith [172] and Yu [205, 207, 206].

Neutrality through Genotype-phenotype Mappings

Moving to the second category, the introduction of neutrality through genotype-

phenotype mappings, which is the approach taken in this dissertation towards the

introduction of neutrality, Lewontin observed that If we take Darwin’s view that evo-
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lution is the conversion of variation between individuals into variation between pop-

ulations and species in time and space, then an essential ingredient in the study of

evolution is the study of the origin and dynamics of genetic variation within popula-

tions [119]. Lewontin [119] identified two distance spaces, a genotype space G and a

phenotype space P and illustrated the representation of the structure of population

genetics as:

G1

T1−→ P1

T2−→ P2

T3−→ G2

T4−→ G
′

1

T1−→ . . .

Which provides a set of rules that maps a population of genotypes (G1) to a phe-

notype space (P1), for selection to occur [56]. Another set of rules map the resulting

population (P2) back to genotype space (G2) where Mendelian genetics can predict

the next generation of genotypes [56]. The four laws associated with transformation

are; T1 epigenetic; T2 natural selection; T3 genotypic survival and T4 mutation [56].

Lewtontin points out that population genetic theory maps a set of genotypes into a

set of phenotypes, provides a transformation in the phenotype space, then map these

new phenotypes back into genotypes, where a final transformation occurs to produce

the genotypic array in the next generation [119].

Another aspect of the mapping between the genotype and the phenotype is the

presence of pleiotropy and polygenic inheritance. With pleiotropy a single gene can

impact on a number of phenotypic traits, polygene, on the other hand, a single pheno-

typic trait may be determined by the interaction of many genes [119]. If we consider

that the operators used in association with GAs are applied at the genotypic level

[67], then when viewing a GA in terms of Lewontin’s mappings [119], GAs operate

from genotype to genotype and new genotypes are created by implementing an inter-
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pretation of biologically inspired genetic mechanisms [119]. The fitness of a genotype

is based on the evaluation of its phenotype.

Evolution explores the phenotypic search space through mutation, recombination

and selection, with exploration being governed by the variational topology of possible

mutations on phenotype space [184]. When discussing variational topology, that is

the effects of changes in spacial relations amongst individuals, we need to examine

both genotypic variational topology and phenotypic variational topology. Nature

uses a complex genotype-phenotype map to advance a relatively simple genotype

space variational topology to an extremely complex phenotypic variational topology.

Toussaint [183] argues that the phenotype space is what should in fact be viewed as

the search space for evolution rather than the genotype space. With this in mind,

the genotype-phenotype map is the key to understanding phenotypic variability and

it also allows us to gain an insight into how evolution can adapt the search on the

phenotype space.

The genotype is a collection of items which are inherited and define the possible

distribution of offspring. The phenotype on the other hand, comprises all of the phe-

notypic traits of an individual that contribute to the overall fitness of that individual.

The genotype-phenotype map sets out a blueprint for moving from genotype to phe-

notype. By viewing a phenotype as the combination of all of the traits of an organism

and the genotype as the genetic encoding of this phenotype, then we will also assume

that there exists a genotypic neighbourhood and a phenotypic neighbourhood. Two

genotypes can be considered equivalent if they represent the same phenotype, however

their variational topologies can differ [176]. The genotype-phenotype map “induces a
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variational topology on the phenotype space depending on the topology of the genotype

space” [183].

If we allow for a surjective genotype-phenotype map, then the same phenotype can

be encoded by a number of genotypes. One major advantage of allowing a many-to-

one non-trivial genotype-phenotype map is that it enables the changing of the geno-

type representation without changing the phenotype. This can be achieved through

neutral mutations which allow for changes in the phenotypic neighbourhood and im-

pact on the search. In other words, neutrality enables phenotypic variability to adapt

and vary, whereby the genotype-phenotype map itself doesn’t need to evolve, neutral-

ity in the phenotypic variational space allows changes to occur in the gene interaction

which introduces a different phenotypic variability. Therefore, by introducing neutral-

ity in a non-trivial mapping, the phenotypic neighbourhood depends on the genotypic

representation of the phenotype and major alterations of the genotypic representa-

tion mean changes in the phenotypic neighbourhood [183]. “The notion of fitness

landscapes is sometimes also used to describe a fitness function over the phenotype

space in the case of a non-trivial genotype-phenotype mapping” [183]. But by intro-

ducing a fixed (non-trivial) genotype-phenotype map you can still achieve adaptable

exploration through “neutral variations in the genotype space” [183].

Trivial neutrality can be defined as a situation where “the evolution of phenotypes

can be understood (i.e., modelled) without referring at all to genotypes, in particular,

neutral traits are completely irrelevant for the evolution of phenotypes” [183]. In

other words with a fixed genotype-phenotype mapping, if their phenotypic outcomes,

that is their phenotypic mutation distributions, are constant in each neutral set [147].
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Therefore with trivial neutrality, neutral traits do not have an impact on phenotypic

evolution [147]. In a non-trivial mapping a single gene is associated with a number

of features in the phenotype, when this gene mutates the features vary in accordance

[183]. This means that with neutrality which is non-trivial, different genotypes within

a neutral set induce different phenotypic distributions [147]. In Toussaint’s [183] view

this implies that selection between genotypes of a similar fitness is similar to the

selection of strategy parameters in self-adaptive EAs [147].

For a genotype-phenotype map to be non-trivial there are a number of conditions

which must be met. Firstly, there is a surjective relationship between genotype and

phenotype and secondly, for a number of the phenotypes, the phenotypic variability

generated depends on the genotype from which it has emerged and the genotype con-

tains neutral traits, which implies that you can have different genetic representations

for the phenotype [182].

Toussaint’s work [184] using trivial neutrality, phenotypic mutation distributions,

are constant over individual neutral sets, indicated that neutral traits have no impact

on phenotypic neutrality [147]. Results showed that trivial neutrality is a necessary

condition for compatibility with a phenotypic projection of a mutation-selection GA

i.e. whether one or another representative of a neutral set is present in a population

does not influence the evolution [147] of a phenotype. What this means is that with

trivial neutrality, neutral traits have no impact on phenotypic evolution. On the

other hand, with non-trivial neutrality, different genotypes in a neutral set allow for

different phenotypic distributions [147]. Toussaint viewed this as having similarities

with the selection of strategy parameters in self-adaptive evolutionary algorithms, as
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there exists a selection between equivalent genotypes when a non-trivial neutrality

is present. In other words he viewed it as fundamental to the mechanics of evolving

genetic representations [184]. Toussaint and Igel [185] argued that approaches to self-

adaption in evolutionary algorithms can be viewed as an example of the benefits of

neutrality. As each chromosome has a mutation rate associated with it, chromosomes

may be part of the same neutral network, as a result of the presence of neutrality,

and have different mutation rates and evolution can choose between these in a self-

adaptive way. The significance of this is that there exists a variety of mutation rates

or distributions within the population, which can evolve. By extension, theoretical

work on self-adaption i.e. [53, 4, 187, 188] etc. may be viewed as examining the

evolution of neutral traits or as explicit examples of the benefit of neutrality [147] .

Many authors suggest that the introduction of redundant representation into a

genetic algorithm introduces an additional source of diversity within the population.

This in turn implies that implicit parallelism occurs for an extended period of time.

Cohoon et al. [33] draw on the idea of punctuated equilibria, which incorporates the

principles of allopatric speciation (rapid evolution of a new species after a small sub-

set of the population become segregated in a new environment) and stasis (where

an isolated population, over time, stabilises). Different environments are created,

by allowing fitness to be accessed relative to a local population. The species that

develop in each environment can be viewed as equivalence classes. In this way mem-

bers of different environments can be exchanged and thereby introduce a new level of

competition into an environment. By having equivalent classes a many-to-one repre-

sentation exists, which proved beneficial to the search using a modified GA. Gould
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[77] explains punctuated equilibris by claiming that the idea that all change is gradual

and continuous results form interpreting changes as mainly adaptations, with most

retained changes being neutral. The accumulation of neutral changes may produce

pre-adaptation phenomena because retained neutral characters may later turn out to

be adapted to new circumstances. Pre-adaptations may in turn explain punctuated

equilibria [27]. Therefore when a neutral character becomes useful through a new ad-

ditional change, the fitness and/or behaviour may change suddenly [27]. Cangelosi et

al. [27] introduced the biological concepts of cell division and migration in addition

to axonal growth and branching into the representation, building on work by Miglino

et al. [130] and found that changes in early stages of cell division and migration had

dramatic effect on the phenotype, with changes in later stages having less of an effect.

The results also illustrated that the effect of a single mutation on the phenotype (the

network) can be much greater if the mapping from genotype to phenotype is complex

and many-to-many rather than simply one-to-one [27].

Banzaf proposed an application of a genotype-phenotype map which separated

the genotype search space from the phenotype solution space [10]. As the phenotype

is an expression of the information contained in the genotype, Bahnzaf’s mapping

included an interpretation of transcription and translation and guaranteed the feasi-

bility of the phenotype, which resulted in multiple genotypes representing the same

phenotype [10]. This allowed for neutrality in the representation, which assisted in

maintaining diversity. Also as described by Elgin [54], random drift caused by neu-

tral variants increases population diversity by expanding the population distribution

so as to help find an escape route from local traps, particularly in high dimensional
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spaces. Translation was also adopted by Ashlock through the use of a translation

table into a self-avoiding walk test problem, but yeilded no significant improvement

in performance [5].

Lehre and Haddow [117, 118] developed a mapping which converted elements into

two symbols, based on RNA secondary folding. The authors identified two types of

neutrality: step k-neutrality, which relates to neutrality created during the mapping

and remaining neutrality, which refers to neutrality which is visible after mapping

has taken place. Their results indicate that with step k-neutrality, the quantity of

neutrality present varies at the genotypic level and for phenotypes which were com-

plex, the quantity of neutrality is relatively low. Results also showed that when

phenotypes were less complicated, the quantity of neutrality present was high. They

also illustrated that the size of neutral networks varied form small to large. The

approach of using mappings was extended by Ebner et al. [51, 52], who took two of

the mappings, cellular automata and RBN with what they referred to as phenotype-

species mapping. They outlined how high levels of mutation could be sustained by

having neutral networks present. They also identified that neutral networks assist in

maintaining diversity in the population, which may be advantageous in a changing

environment.

Chow et al. [29, 30] outlined a diploid chromosome, a data chromosome and

a mapping chromosome. Both chromosomes undergo an evolutionary process, the

data chromosome is altered by crossover and mutation and for the mapping chro-

mosome bits are altered by using a permutation operator. This type of mapping

introduces neutrality as all the bits of the data chromosome may not take part in
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genotype-phenotype mapping. Using trap functions [47], Chow illustrated that there

were advantages associated with neutrality. Ronald et al. [152] examined the use of

redundant representation and describe how representative encodings can introduce

cloaked duplicates, where a number of different genotypes (also referred to as isomor-

phic genotypes) encode for the same phenotype. The authors point out that with GAs

and scheduling problems, a degree of redundancy exists in the encodings and use the

Travelling Salesperson Problem to illustrate the presence of cyclic-shift isomorphism

and inverted-ordering isomorphism. Because of the presence of these isomorphisms,

an Edge Recombination Operator (ERO) (as found in [200]) and an inversion oper-

ator were used for crossover and mutation. A process of isomorphic normalisation

was used to reduce redundancy and in turn, the size of the search space. The paper

argued that by eliminating redundancy, through normalisation and duplicate removal

was beneficial.

Galván-López and Poli [63] introduced a neutral network of constant fitness,

equally distributed across the entire search space. They used a mutation only bi-

nary GA and added neutrality by including an extra bit to the representation. A 1

indicated that the genotype is on the neutral network and a 0 indicated that the geno-

types fitness is determined by the coding bit as would be usual, dividing the search

space into two equally sized spaces, the neutral layer and the normal layer. The au-

thors analysed population flows; compared the percentages of successful searches and

the difficulty of the landscape using fitness distance correlation. A OneMax problem

and a deceptive trap function were used as test problems. The authors argued that

neutrality may be beneficial in some cases. However this comes at a cost, as there is
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extra computational overhead required due to the increase in the search space. Which

means that any additional benefit may be outweighed by the additional overhead.

The unimodal landscape used, showed little sign of any benefit of including neu-

trality. There may however, be a benefit of including neutrality when the population

is initialised in the wrong area of the search space. The authors also tracked the ori-

gin of a sample point and gathered data on the population flows, as each individual

had only one parent, from one area to another. The population flow data indicated

that the majority of off-spring in an area come from parents already in the area. The

authors illustrated that there is a difference in the behaviour of a genetic algorithm

depending on whether a neutral network has a low or a high fitness value. They

argue that neutrality should be beneficial only when it modifies the search basis of an

algorithm-problem pair [62] which improves the likelihood of sampling the global opti-

mum. If the reverse happens and the introduction of neutrality makes it more difficult

to reach to global optimum, then neutrality will be of little benefit [62]. Doerr et al.

[49] carried out a run-time analysis of the effects of incorporating neutrality. They

used the same model of neutrality and problems as found in [63, 62, 61] and show

that there was no significant advantage of using neutrality over a OneMax landscape

or a deceptive problem landscape with a single global optimum and a single local op-

tima. They did view neutrality as being possibly beneficial over deceptive functions

with a single global optima and two local optima, as the run-time was reduced from

exponential to polynominal or when the number of search points being nearly optimal

is at least a polynomial fraction of the search space [49]. The results illustrate how

neutrality may be beneficial, depending on the amount of neutrality present and the
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type of landscape.

3.4 Chapter Summary

To summarise, this chapter reviewed the literature associated with Neutral the-

ory; neutrality from a biological context; and synthetic neutrality as implemented

in artificial systems. As neutrality can be defined as a situation where following a

mutation one genotype changes to another genotype, but both genotypes represent

the same phenotype [111], this implies that as neutrality is introduced, the solution

space increases without increasing the genotype space. The main focus of most of the

research to-date relates to the evolvability of a population and examines the ability of

variations to assist the search by including redundant representations, with research

examining the impact of being able to change the genotype without changing the

phenotype. As this dissertation examines the impact of implementing Neutral theory

in a GA, the chapter focused primarily on the introduction of synthetic neutrality into

artificial systems and specifically on neutrality in GAs, where neutrality is introduced

through either fitness landscapes or through the genotype-phenotype mapping.

Having examined past research one of the most interesting questions lies in the

development of a non-trivial representation and examining the impact of they type of

neutrality produced by the representation on variation and variability. In developing

a tunable neutral representation, which maintains variation and alters variability, it

is planned to use this framework to empirically analyse the impact of neutrality over

various landscapes using a GA which incorporates the modular based, fixed, non-

trivial genotype-phenotype representation. The next chapter outlines the design of
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the multi-layered GA (MGA), and describes how neutrality is introduced into a GA’s

genotype-phenotype mapping, through an implementation of the biological processes

of transcription and translation, discussing dynamic activation and it’s impact on

connectivity. The chapter also outlines the missense mutation operator and how it

functions within the layered representation.



Chapter 4

Multi-Layered GA (MGA) Design

4.1 Introduction

In designing the proposed representation, the aim is to develop a representation for

the MGA which is modular in construction, maintains variation, increases variability

and governs the evolutionary trajectory. The other design constraints are: that the

layered mapping of the representation contains a binary haploid primary structure

which allows the use of standard well understood, variational operators in a problem

independent manner; that multiple genotypes will represent the same phenotype [10].

This chapter outlines the motivation and design of the proposed MGA representation,

which includes a many-to-one genotype-phenotype mapping. The proposed mapping

is modular in design and incorporates a fixed, non-trivial mapping. The chapter

is laid out as follows: Section 4.2 outlines the motivation behind the MGA design.

Section 4.3 gives an overview of the MGA, describing its design and Section 4.4

outlines the implemented interpretation of the transcription and translation phases,

74
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allowing the two step expression of the genes. The chapter also describes the missense

mutation operator and outlines the arity of representations used in the dissertation,

giving a worked example of a 6-3-1 representation. Section 4.5 presents an overview

of the workings of the genotype-phenotype mapping, giving a detailed and worked

description of the mapping from the genotype through the processes of transcriptions

and translation and on to create the phenes and eventually the phenotype. A phene

can be used to describe a single unit of a phenotype, where a phenotype is the

manifestation of it’s phenes. Finally, Section 4.6 concludes the chapter.

4.2 Motivating the MGA

Rather than introducing an initial Big Bang of diversity into an unusually large

population to decrease the probability of premature convergence [14], a GA which

through its representation contains neutrality, maintains diversity and prevents pre-

mature convergence may offer a useful search strategy over difficult landscapes. In

relation to organismic design, modularity is a common feature [192] and can be in-

terpreted as a genotype-phenotype map where pleiotropy (a change in a gene can

influence a number of traits) mainly exists amongst characters that are part of a

single function complex [192]. By adopting this approach, evolvability can improve

as the levels of interference between the adaption of different functions is reduced

[192]. The genotype-phenotype map included in the MGA incorporates modularity

and the idea of characters being part of a single function complex, whilst minimising

pleiotropy.

The variational properties of the phenotype are a level of phenomena distinct from
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phenotypic adaptation; they are subject to distinct evolutionary dynamics [192]. When

exploring the phenotypic space, it is critical to gain an understanding of the varia-

tional topology in trying to determine the shape of the landscape [184]. Many evolu-

tionary algorithms are created using a fixed variation topology. However, in nature

phenotypic variation landscapes are not fixed. These non-fixed phenotypic variation

landscapes can be referred to as a non-trivial in terms of their genotype-phenotype

map [184]. A non-trivial genotype-phenotype map can be viewed as having the fol-

lowing characteristics: firstly, a phenotype can be encoded by many genotypes and

secondly, the phenotypic variability of a number of phenotypes will depend on their

genotype [182]. Therefore, every genotype can be described as a combination of a phe-

notype and any kind of neutral traits which exist within the genotype, where different

neutral traits associated with the same phenotype give a different representation of

the phenotype in question [182].

Many authors have developed GAs which attempt to introduce interpretations of

biological processes including [204, 145, 26, 28, 116]. For GAs, the primary structure

(genetic representation) is the genotype and the secondary structure is the pheno-

type. Also in GAs, the variational topology is traditionally fixed, whereas in nature

phenotypic variational topology is not fixed. However, as pointed out by Toussaint in

[184], the introduction of an adaptable exploration is possible by creating a fixed but

non-trivial genotype-phenotype map, which is achieved by having neutral variations

in the genotype space. The choice of genetic representation, the primary structure,

used to represent a neutral set which encodes a phenotype will impact on the phe-

notypic variability. The outcome of this is that the evolutionary path is governed by
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phenotypic variational topology.

4.2.1 Phenotypic Variability & Neighbourhood Equivalence

The idea of including redundancy or neutrality into the genetic representation

introduces the notion of phenotypic equivalence, as neighbourhoods of genotypes can

be formed based on the idea of equivalent classes. In other words, as individual alle-

les only appear for natural selection when they are expressed phenotypically, alleles

which are phenotypically similar can be clustered into phenotypic equivalence classes.

However, this idea of comparison through the use or equivalent classes can be found

throughout the literature, and measuring evolutionary activity at the level of geno-

types or equivalent classes of genotypes is also straightforward [148]. But carrying out

analysis at the level of alleles can be more difficult, particularly when the genotype-

phenotype map is context sensitive, that is when you have epistasis or polygene,

where many genes together can affect a particular trait or character [148]. Therefore,

the interpretation of an alleles’ evolutionary activity is easier if it has a phenotypic

function which is clearly identifiable. The analysis of evolutionary activity becomes

more difficult as the level of context sensitivity within the genotype-phenotype map

increases.

To understand the evolutionary process it is critical that we understand the acces-

sibility of phenotypes from genotypes and the impact of neutrality in relation to this

mapping from genotype to phenotype. In order to gain an understanding of pheno-

typic variability we need to examine the evolutionary path from the genotypic space

to the phenotypic space. These respective spaces (genotypic and phenotypic) can be
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viewed as topological spaces which in turn are broken into sets of neighbourhoods.

In the genotype topological space, particular genotypes are grouped into neighbour-

hoods based upon closeness to particular phenotypes. This closeness is not based on

similarity, but on the accessibility of the phenotype to the genotype topological space

and ignores any associated fitness values. The closeness can be determined by the

number of mutations away a particular genotype is from a phenotype [59].

The phenotype space can be viewed as the phenotypic topological space which

can also contains a set of neighbourhoods. However, the difficulty here is that phe-

notypes, by their nature are not altered by physical processes such as mutation. To

overcome this, neighbourhoods in the phenotypic topological space can be classified

by closeness in terms of a continuous evolutionary path. Therefore, by examining

the statistical frequency by which a mutation on a particular genotype yields a phe-

notype, we can define a notion of closeness in the phenotypic topological space [59].

Neutrality and neutral genetic drift in the mapping process is important in defining

the phenotypic topology, and the variation in phenotypic topology. Because of the

presence of neutrality, phenotypes can be used to mean similarity between genotypes.

Therefore, the closeness of phenotype neighbourhoods depends on the statistics of

neighbourhood closeness among genotype neighbourhoods [60].

4.3 MGA Design

The Multi-layered Mapping GA (MGA), employs a modular approach to the cre-

ation of a genotype-phenotype map, which moves from genes to phenes by using a

basic interpretation of the biological processes of transcription and translation. It is
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these processes that create the neutral networks and define the variation and variabil-

ity. At a very basic level, the biological process of transcription involves the copying

of information stored in DNA into an RNA molecule, which is complementary to

one strand of the DNA. The process of translation then converts the RNA, using a

predefined translation table, to manufacture proteins by joining amino acids. These

proteins can be viewed as a manifestation of the genetic code contained within DNA

and act as organic catalysts in anatomy.

Multi-layered GA (MGA) Schema

Figure 4.1: Overview of Multi-layered GA (MGA)

The schema for the MGA is depicted in Figure 4.1 and the mapping used in this

dissertation produces two kinds of phenes, ‘0’ or ‘1’, each made up of combinations

of a number of characters (A, C, G and U) representing amino acids. The number

of characters used to represent a phene and the number and type of phene can vary

and are set at initialisation. These phenes are then combined to create a phenotype

which is evaluated for fitness. And by a phenotype I mean a collection of phenes,
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with each phene incorporating a number of characters made up from genes, within

the metaphor of EAs.

Multi-layered GA (MGA) Schema

Initialize MGA;

for Number of runs do

Initialise Individual Genomes ;

Transcribe Genome to Amino Acids ;

Translate Amino Acids to Phenotype ;

Evaluate Pg (Phenotype fitness);

for Number of Generations do

for All members of the Population do

Select Pg from Population ;

Crossover at genotype level ;

Mutation at genotype level ;

Transcribe Genome to Amino Acids ;

Missense Mutation at rna level ;

Translate Amino Acids to Phenotype ;

Evaluate (phenotype fitness);

end

end

end

End MGA;

Algorithm 1: MGA Pseudocode

This approach enables changes in the phenotypic neighbourhood, where phenes,

which are genetically determined characteristics or traits created through various

combinations of amino acids based on translation tables. That is, if the translation

tables change so too do the phenotypic neighbourhoods, as the translation phase
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determines the phenotypic neighbourhoods. Another feature of the MGA is the ability

to introduce variation operators at levels other than the genotypic level [10]. This

offers the opportunity to include interpretations of operators [56], such as missense

mutation, which exist in biology and operate at the RNA level. The pseudocode is is

outlined in Algorithm 1.

4.4 MGA Representation

The MGA employs a modular approach to the creation of a genotype-phenotype

map, which moves from genes to phenes using a basic interpretation of transcrip-

tion and translation. With the multi-layered mapping of the MGA, as you progress

through the layers the level of redundancy alters. In the transcription layer, which

maps |φg| (the genotype space) to |φd| (the DNA space) which is mapped to |φr|

(the RNA space) there is no redundancy, however redundancy exists during trans-

lation. The MGA genotype-phenotype mapping comprises of two main phases, the

transcription phase and the translation phase, both of which are outlined below.

4.4.1 Transcription Phase

The genotype-phenotype map enables the encoding of a phenotype of length l by

a genotype of length lc, with c being the number of bits required to represent each

of the k symbols, with k being the size of the alphabet being used by the MGA to

represent a phene, in this dissertation ‘0’ and ‘1’. As all the genotypes bits have

an effect on the evolution of the phenotype there is no redundancy and neutrality

is not trivial i.e. the phenotype can be encoded by many genotypes and phenotypic
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variability of a number of phenotypes will depend on their genotype [182].

The MGA also offers the ability to alter the alphabet size and to implement a

neighbourhood map which allow for different types of neutral traits represented in

the genotype to represent the same phenotype. Beginning with a binary string, which

represents the genotype, the MGA maps pairs of binary bits into one of four char-

acters A, C, G or T. These characters represent the first phase of the transcription

where a template strand is created. Following this, the template strand maps onto a

coding strand and the final stage of the transcription phase maps the coding strand

onto RNA. Using a four letter alphabet (A, C, G and U), the RNA sequence is com-

plementary to that of the DNA template strand and therefore is the same sequence

as the DNA coding strand, with uracil (U) in place of thymine (T). Table 4.1 outlines

the mapping process used by the MGA to implement the transcription stage. Each

of the mapping layers offer the opportunity to introduce variation operators.

Transcription Process

Template Strand Map Coding Strand Map RNA Map

00 → A A → T T → U
01 → C C → G G → G
10 → G G → C C → C
11 → T T → A A → A

Table 4.1: Transcription Stage - Template Map, Coding Map & RNA Map
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4.4.2 Translation Phase

Once the transcription phase is completed and the alphabetic characters have

been combined, the translation stage uses the information and maps it against the

translation tables created by the MGA to examine neighbourhood equivalence and

manufacture a phene, the MGA can also adjust the number of bits required to makeup

a phene and this can be set at initialisation. The size of the translation table is deter-

mined by the representation chosen. For a 4-bit MGA representation, a translation

table of 24 is used; with a 6-bit MGA representation a 26 translation table is needed

and with an 8-bit MGA representation a 28 translation table is created. The size of the

translation represents the granularity of neutrality which exists in the representation.

6-3-1 Representation

In order to describe the MGA representation, the steps required to create a 6-3-1

representation (illustrated in Figure 4.4) are outlined below. In this example each

phene is made up from 3 characters and each character is represented by 2 binary

bits. Therefore, in the 6-3-1 MGA representation c = 6 as 6 bits are required to

represent a single phene, ‘0’ or ‘1’. As the value of c changes, so too does the amount

of neutrality present in the representation and the accessibility of phenotypes from

genotypes. Once the level of c and the number of phenes required has been decided,

initialisation begins by creating the translation tables to represent each phene.

The creation of a set of translation tables requires integer values representing

each phene, to be translated into binary strings is illustrated in Table 4.2, with

Table 4.2a showing the 6-bit strings representing phene ‘0’ and Table 4.2b the 6-bit
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Phene ‘0’

000000 000010 000100 000110
001000 001010 001100 001110
010000 010010 010100 010110
011000 011010 011100 011110
100000 100010 100100 100110
101000 101010 101100 101110
110000 110010 110100 110110
111000 111010 111100 111110

(a) 6-3-1 Binary Representation Phene ‘0’

Phene ‘1’

000001 000011 000101 000111
001001 001011 001101 001111
010001 010011 010101 010111
011001 011011 011101 011111
100001 100011 100101 100111
101001 101011 101101 101111
110001 110011 110101 110111
111001 111011 111101 111111

(b) 6-3-1 Binary Representation Phene ‘1’

Table 4.2: Binary Representation for Phenes ‘0’ & ‘1’

strings representing phene ‘1’. Once binary tables are created they are then mapped

to translation tables containing combinations of characters. In this representation, 3

character groupings are used to represent each phene. The translation tables created

for the 6-3-1 representation are shown in Table 4.3, with Table 4.3a containing the

character combinations required for phene ‘0’ and Table 4.3b, the characters required

for phene ‘1’. These tables indicate that each of the phenes are represented by a

combination of 3 characters.

Phene ‘0’

AAA AAG ACA ACG
AGA AGG AUA AUG
CAA CAG CCA CCG
CGA CGG CUA CUG
GAA GAG GCA GCG
GGA GGG GUA GUG
UAA UAG UCA UCG
UGA UGG UUA UUG

(a) Translation Table Phene ‘0’

Phene ‘1’

AAC AAU ACC ACU
AGC AGU AUC AUU
CAC CAU CCC CCU
CGC CGU CUC CUU
GAC GAU GCC GCU
GGC GGU GUC GUU
UAC UAU UCC UCU
UGC UGU UUC UUU

(b) Translation Table Phene ‘1’

Table 4.3: Character Representation for Phenes ‘0’ & ‘1’
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Dynamic Activation

After information located in DNA is copied, through transcription, to RNA, trans-

lation takes place where RNA is used to assemble proteins. As much of the DNA does

not encode proteins and instead encodes various types of functional RNAs [15], the

proposed representation uses predefined DNA locations to code for a basic interpreta-

tion of different functional outputs. This allows the possibility of loci on a genotype,

where given a certain context are functionless (mutation makes no difference) [84],

but combined with a value elsewhere on the genotype may become important [84]

Dynamic Activation

Genotype Template Strand Coding Strand RNA Strand Phenotype
**0000|******|**0000 *AA|***|*AA *TT|***|*TT *UU|***|*UU 0*0
**1111|******|**1111 *TT|***|*TT *AA|***|*AA *AA|***|*AA 1*1

Table 4.4: MGA 6-3-1 Dynamic Activation Pairings

The mappings shown in Table 4.4, identify the predefined locations and relate to

the idea of dynamic activation [193, 15], which results in an adaptive change that

produces the opposite outcome to that outlined in the translation table when pairs of

characters are located on the predefined loci, match the pairings shown in Table 4.4.

The ‘*’ represents don’t care in relation to characters present.

The dynamic activation encodings assist in increasing connectivity and alters the

functional outcome of phenotypes. The process involves locating the presence of

characters at predefined locations and if required, altering the nearest phene value

associated with the loci as per the mappings in Table 4.4 rather than per the trans-
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lation tables. Dynamic activation enhances the non-trivial and pleiotropic nature of

the representation and implies that a single gene is associated with a number of fea-

tures in the phenotype and when the gene is mutated the features vary accordingly.

A worked example of this is presented in Table 4.5.

Variability

As mentioned with a redundant representation, a phenotype’s phenotypic neigh-

bourhood corresponds to the phenotypes which are reachable from the given pheno-

type by a single mutation of the genotype representing it [35]. Connectivity relates

to the number of phenotypes which make up the phenotypic neighbourhood of a phe-

notype. With a non-redundant binary representation with a phenotype of length l

and each reachable phenotype from any another phenotype are all different, then the

connectivity is l [35].

Connectivity

Figure 4.2: Non-Redundant & Redundant Phenotypic Connectivity
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When defining neutrality, linear representations specify a set of phenotypes reach-

able from a given phenotype by a single mutation and all genotypes which represent

the same phenotype reach the same set of phenotypes. However, when taking neu-

tral theory into account, then the accumulation of neutral mutations should lead to

new paths being located [35]. A mutation within the MGA model is viewed as be-

ing neutral when the resulting phenotype remains unchanged. Figure 4.2 compares

the variability associated with a non-redundant GA representation and the proposed

MGA redundant representation. The example illustrates the change in variability

and shows a number of genotypes representing the 0000 phenotype can increase the

connectivity for a phenotypic neighbourhood from 4, for the non-redundant represen-

tation to 5 through single bit adaptive mutation of the genotypes representing the

0000 phenotype. This change in connectivity is only applicable in situations where

dynamic activation takes place. This is because dynamic activation, assists in min-

imising pleiotropy and in making the representation non-trivial, as the variability of

a number of phenotypes will depend on their genotypes.

MGA Connectivity

Polygenic & Pleiotropic Genotype Template Strand Coding Strand RNA Strand Phenotype

**0111****11****11**1111 *CT|**T|**T|*TT *GA|**A|**A|*AA *GA|**A|**A|*AA 0000
**1111****11****11**1111 *TT|**T|**T|*TT *AA|**A|**A|*AA *AA|**A|**A|*AA 1001
**0110****11****11**1111 *CG|**T|**T|*TT *GC|**A|**A|*AA *GC|**A|**A|*AA 1000
**0111****10****11**1111 *CT|**G|**T|*TT *GA|**C|**A|*AA *GA|**C|**A|*AA 0100
**0111****11****10**1111 *CT|**T|**G|*TT *GA|**A|**C|*AA *GA|**A|**C|*AA 0010
**0111****11****11**1110 *CT|**T|**T|*TC *GA|**A|**A|*AC *GA|**A|**A|*AC 0001

Table 4.5: Reachable Phenotypes through single Bit Adaptive Mutation
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SGA Connectivity

Genotype Phenotype

0000 0000
1000 1000
0100 0100
0010 0010
0001 0001

Table 4.6: Reachable Phenotypes through single Bit Adaptive Mutation

The design of the MGA’s primary structure is outlined in Table 4.5, which il-

lustrates the impact of a single-bit mutations for a genotype representing the 0000

phenotype for the redundant 6-bit MGA representation and Table 4.6 for the non-

redundant SGA representation. From the Table 4.5 each of the MGA’s genotype

contains ‘*’ characters representing silent mutations (cold zones) and the ‘0’ and ‘1’

gene represent the possibility of adaptive mutations (hot zones). The hot zones rep-

resent a possibility of producing an adaptive mutation as not every mutation will

lead to a different phenotypic trait [139]. The adaptive mutations are determined by

the sets of characters and a translation table to which they belong. The predefined

locations for dynamic activation are identified in blue and dynamic activation takes

place in this example when two pairs of A characters are located on the RNA string,

identified in red on the genotype.

4.4.3 Missense Mutation Operator

Missense mutation changes a single base pair which causes the substitution of a

different amino acid in a resulting protein. The missense mutation operator is in-
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terpreted and implemented as follows: once the processes of transcription has taken

place, if a missense mutation occurs then one of the RNA bases is flipped to an-

other, with the mapping used for missense mutation illustrated in Table 4.7, showing

that each character can be mutated to any other character. Missesse mutation is

capable of producing silent and adaptive mutations depending on the position of the

loci involved. Any changes introduced by missense mutation are reflected back on

the genotype as well as altering the RNA string. Following missense mutation, the

translation phase takes place. It should be noted that like traditional point mutation

operators, the probability of a missense mutation taking place is on each single codon.

Missense Mutation Mapping

A → C Adaptive/Silent Mutation C → A Adaptive/Silent Mutation
A → G Adaptive/Silent Mutation C → G Adaptive/Silent Mutation
A → U Adaptive/Silent Mutation C → U Adaptive/Silent Mutation
G → A Adaptive/Silent Mutation U → A Adaptive/Silent Mutation
G → C Adaptive/Silent Mutation U → C Adaptive/Silent Mutation
G → U Adaptive/Silent Mutation U → G Adaptive/Silent Mutation

Table 4.7: Missense Mutation Mapping

4.4.4 MGA Arity

The arity of the MGA, which impacts on the accessibility of phenotypes from

genotypes, is decided by the user in advance of initialisation. In this dissertation

three granularities of representation are used. Figure 4.3 illustrates a 4-bit MGA

representation which requires 4 bits for each individual element of the phenotype.

With a 4-bit MGA representation (c = 4) the size of the translation table is 24. Figure
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4.4 shows a 6-bit MGA representation, where c = 6 and the size of the translation

table is 26. Finally, Figure 4.5 represents an 8-bit MGA representation where c = 8

and the translation table is 28. The granularity of neutrality which is related to

the arity of the representation, as is the accessibility of phenotypes from genotypes.

The coarseness of the granularity becomes finer as the level of arity increases and

visa-versa.

4-bit MGA Representation

Figure 4.3: 4-Bit MGA Representation Mapping
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Multi-layered GA (MGA) Schema

Figure 4.4: 6-Bit MGA Representation Mapping

Multi-layered GA (MGA) Schema

Figure 4.5: 8-Bit MGA Representation Mapping
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4.5 MGA Mapping Overview

MGA Mapping Example

Table 4.8 illustrates the mappings from genotype strings which are transcribed

and translated into phenes for a 3-bit problem. The mapping process begins with a

genome string, which is mapped to the template strand using the template mappings

in Table 4.1. This is then converted to create the coding strand and following this the

next phase in the transcription stage is to create RNA. This is achieved by using the

RNA mappings in Table 4.1, essentially once the DNA coding string is created, each

occurrence of T is replaced by U to create the RNA string. Once we have created the

RNA, the transcription stage is now complete.

Genotype-Phenotype Mapping

Genotype 100000 101100 110000

Transcription Phase:
DNA Template GAA GTA TAA

DNA Coding CTT CAT ATT

RNA CUU CAU AUU

Translation Phase:
Phenotype - Translation table mapping 1 1 1

Dynamic Activation Implemented UU UU

Phenotype - Following Dynamic Activation 0 1 0

Table 4.8: MGA Genotype-Phenotype Mapping

Translation now begins and the RNA is compared to the values contained in the

translation Tables Table 4.3, which check for neighbourhood equivalence and then

map to phenes. In this example there are matching pairs of RNA located at prede-

fined locations - UU - therefore the values are subject to dynamic activation encod-

ings and are altered accordingly with the nearest phenes having their values changed.
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Once the phenes have been created they are then combined together to create a 3-bit

phenotype as illustrated in Table 4.8, which shows an 6-bit MGA representation.

Missense Mutation Mapping

Genotype 10000100 10001101 10001111
DNA Template GACA GATC GATT
DNA Coding CTGT CTAG CTAA
RNA Map CUGU CUAG CUAA
Phenotype 1 0 0
Exampe 1:
Missense Mutation CUGC CUAG CUAA
Phenotype 1 0 0
Genotype 10001101 10001101 10001111
Example 2:
Missense Mutation CUGU CUAA CUAA
Phenotype 1 0 0
Genotype 10000100 10001100 10001111
Example 3:
Missense Mutation CUGU CUAG CUAC
Phenotype 1 0 1
Genotype 10000101 10001100 10000001
Example 4:
Missense Mutation CUGU CUAG GUAA
Phenotype 1 0 0
Genotype 10000101 10001100 10001111

Table 4.9: MGA Missense Mutation Mapping

Missense Mutation Example

Table 4.9 illustrates, using an 8-bit representation, the impact of missense muta-

tion using a number of examples where a mutation takes place. The table begins by

mapping a genotype through the transcription and translation phases and produc-

ing the phenotype 100. Example 1 shows the result of missense mutation where the

RNA map CUGU is mutated to CUGC and how this is reflected in the genotype.

It should be noted that although the genotype has been altered, the phenotype has

remained the same as both RNA map values (CUGU and CUGC) are found in the
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same translation table. In Example 2, the RNA map CUAG is mutated to CUAA.

The effect of this is shown in the genotype change but the phenotype still remains

unchanged as CUAG and CUAA are found in the same translation table. In Exam-

ple 3, the RNA map CUAA is mutated to CUAC, the effect of this is to alter both

the genotype and the phenotype as the RNA maps CUAA and CUAC are located

in different translation tables. Finally, Example 4 shows the RNA map CUAA being

mutated to GUAA. This is again reflected back onto the genotype but the phenotype

remains unchanged as CUAA and GUAA are both members of the same translation

table. With missense mutation whether a mutation is silent or adaptive is dependent

on the contents of the translation table. In other words, a missense mutation can

be adaptive at a genotypic level, but whether it is silent or adaptive at a phenotypic

level is dependent upon the translation table and dynamic activation.

MGA Mapping Summary

To summarise |φg| = {0, 1}lg where lg is the genotype length. The transcription

phase maps |φg| → |φd| → |φr|, where |φd| = {A,C,G, T}lg/2 with the following

mappings: 00 → A; 01 → C; 10 → G and 11 → T . A bijective mapping maps

|φd| → |φr|, where |φr| = {A,C,G, U}lg/2. U is included for biological plausibility

and has no impact on the evolution unless we include operators at this level. Fol-

lowing transcription, the translation phase takes place, mapping the RNA space to a

phenotype space |φp|, |φr| → |φp|, where: |φp| = {0, 1}l/c. The value c represents the

cardinality chosen at initialisation to create a translation table. The translation table

maps c/2 characters to a phenotypic bit, either 0 or 1. The level of redundancy is
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determined by c and implies |φg| > |φp| where c > 1 and c is even. Missense mutation

in nature is carried out at the RNA level. In relation to the MGA, the Missense

mutation mapping is as follows: A → C,G or U , C → A,G or U , G → A,C or U

and U → A,C or G. The variation operators, one-point crossover and single-point

mutation occur at the genotype level prior to transcription and missense mutation

takes place in the RNA space before translation.

4.6 Chapter Summary

This chapter outlined the Multi-layered GA (MGA) which uses the biological con-

cepts of transcription and translation to implement a modular, non-trivial genotype-

phenotype mapping which is designed to introduce neutrality into the representation.

The MGA, is designed to allow flexibility to exist in the phenotypic variational topol-

ogy. To achieve this the size of the alphabet to be created is decided at initialisation

and each possible ordering must be assembled in the translation table to represent

either a ‘0’ or a ‘1’, thereby guaranteeing that the representation will result in a bi-

nary mapping. The multiple mappings and translation tables required for the chosen

arity of representation are then created by the MGA. The MGA randomly initialises

the binary genome string and this in turn is converted using a series of mappings to

convert genes into a combination of amino acids which are examined for neighbour-

hood equivalence in the translation phase and create a phene. An important point

to note is that these neighbourhoods are designed to introduce variation in the popu-

lation and variability into the phenotypic topology, thereby allowing a phenotype to

be encoded by a number of genotypes and that the phenotypic evolution can only be
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understood by monitoring the neutral traits. The phenes are then combined to form

the phenotype. The primary structure of the representation is designed to increase

variation and variability.

The mapping feature of the transcription phase is a form of complementing and

appears in many ways, a form of inversion. This is an attempt to, in a basic way,

recreate the bridging between the gene and the phene, as in natural RNA which

is complementary to the template strand. Therefore, the mappings are included

to mimic closely, but still at a basic level, naturally occurring phenomenon. The

translation phase on the other hand, takes the output from transcription and maps it

to a phene through neighbourhood equivalence with the translation tables generated

by the MGA. This allows for neutral traits to be included and are of importance

as they allow increased variation and induce phenotypic variability. Finally, the

structure of the MGA allows for the introduction of operators at levels other than the

genotypic level. The following chapter, Chapter 5 looks at the efficacy of the MGA

over a number of different landscapes.



Chapter 5

Examining the Efficacy of a

Multi-Layered GA

5.1 Introduction

This chapter examines the efficacy of the MGA using a number of experiments

designed to test and analyse the impact of a biologically inspired modular, non-trivial

genotype-phenotype map, which introduces neutrality into the representation of a GA

(as outlined in Chapter 4). The proposed genotype-phenotype map introduces a more

flexible phenotypic structure and a higher degree of phenotypic variability through

the presence of neutrality. The multi-layered genotype-phenotype map is tested over

deceptive landscapes, changing deceptive landscapes and De Jong’s test suite, which

have all been used in past research as benchmark tests for GAs. The chapter is laid

out as follows: Section 5.2 gives an overview of the efficacy experiments conducted.

Section 5.4 describes the Test 1 experiments conducted over static and changing

97
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deceptive landscapes and includes extracts from [86, 87, 88]. Section 5.5 outlines the

Test 2 experiments carried out over De Jong’s test suite and analyses the results, with

extracts found in [89]. Finally, section 5.6 summarises and concludes the chapter.

5.2 Efficacy Experiments Overview

The experiments outlined in this chapter are separated into two tests: Test 1 and

Test 2. The experiments carried out under Test 1, outlined in Section 5.4, are con-

ducted over a number of static and dynamic fully deceptive landscapes. The intention

is to examine the impact of neutrality, introduced through the modular, non-trivial,

many-to-one genotype-phenotype map over static and changing deceptive landscapes,

each containing a different degree of problem difficulty. Deceptive landscapes were

chosen as they have often been used in past research [70, 73, 198, 138] etc. to test

the exploration ability of GAs and overcome the difficulty of being drawn towards a

deceptive attractor. The experiments conducted in Test 2 are carried out using De

Jong’s test suite [43], described in Section 2.6.1 and contain a number of problems

designed to include features often found in optimisation problems. De Jong’s test is

often used in determining the robustness of a GA and has become a standard bench-

marking test, used to examine the performance of various GAs. Overall, the aim of

the experiments outlined in Section 5.4 and Section 5.5 are designed to illustrate the

efficacy of the MGA.
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5.3 Statistical Significance

The two sample t-test simply tests whether or not two independent populations have

different mean values on some measure. The choice of significance level at which you

reject a hypothesis H0 is arbitrary. The Wilcoxon signed-rank test is a non-parametric

statistical hypothesis test which is often used to compare two related samples. It has

been used as an alternative the paired t-test when the population cannot be assumed

to be normally distributed. A t-test and the Wilcoxon rank sum test were used to test

for statistically significance between the results obtained with the SGA and the MGA.

In this dissertation, results where p < 0.05 are referred to as statistically significant

and statistically highly significant if they return p < 0.001.

5.4 Test 1 - Deceptive Landscapes

To examine and compare the performance of both a simple GA (SGA) and the

MGA, experiments were conducted over a number of fully deceptive landscapes which

fall into the class of GA-hard problems [70] and are as follows:

• 3-bit fully deceptive experiments [65]

• 10 3-bit fully deceptive experiments [73]

• 10 3-bit changing landscape fully deceptive experiments [87]

The smallest 3-bit fully deceptive problem is similar to that outlined by Goldberg

in [65]. The loosely ordered 10 3-bit problem is as described by Goldberg & Bridges
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[73] and incorporates the 3-bit problem into 10 3-Bit deceptive order-three sub func-

tions. By running a GA on a static environment it’s adaptiveness is difficult to test.

However, by changing the environment we have an opportunity to examine the ability

of a GA to readjust the search and look for a new global optimum, thereby observing

the balance between exploration and exploitation. To investigate the adaptability of

the MGA, a changing 10 3-bit problem is used which alters the landscape during the

search, allowing the opportunity to examine, the performance of both GAs over a

dynamic environment, which exist in many real world problems.

The aim of Test 1 is to examine the efficacy of a modular, non-trivial biologically

inspired, multi-layered GA over a number of fully deceptive landscapes. By compar-

ing the performance of a SGA over both static and changing fully deceptive envi-

ronments, with that of multi-layered mapping GA (MGA) the following hypothesis

(H1) is tested: Including a biologically inspired, multi-layered, many-to-one genotype-

phenotype map into a GA, benefits searching fully deceptive changing landscapes.

5.4.1 Test 1 Experiment Results

Parameters

The experiments were conducted with a population size of 200, apart from the

3-bit deceptive problem, which because of its limited search space, had a population

of 20. The population size of 200 was chosen to ensure adequate exploration of the

search space and give both GAs a reasonable chance of success. A crossover rate of

0.7 and a mutation rate of 1/l, where l is the length of the chromosome were used.

The 3-bit experiment was run over 100 generations and results averaged over 10 runs.
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The 10 3-bit deceptive problem over 3000 generations and averaged over 10 runs

and the changing 10 3-bit deceptive problem over 25000 generations and performance

averaged over 10 runs. The results of Test 1 are outlined below.

3-bit Deceptive Problem

To gain an initial understanding of the efficacy of the MGA, the off-line perfor-

mance (average best fitness) for both the SGA and the MGA were monitored. The

first set of experiments were run over a 3-bit fully deceptive problem. Figure 5.1

shows the average best fitness for both the SGA and the MGA, with both variations

of the GA locating the global optimum (maximum fitness level of 30) quite quickly as

the 3-bit deceptive problem is relatively easy and both algorithms had little difficulty

in solving it.

Figure 5.1: Off-line Performance (Average Best Fitness) 3-Bit Deceptive Problem

Overall, when we examine Figure 5.1 it is difficult to argue for the introduction of

the layered genotype-phenotype mapping proposed in the MGA given the extra com-
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putational overhead associated with implementing the proposed genotype-phenotype

map, which seems similar to the findings from Doerr et al. [49] and Collins [34]. So

although the MGA exhibits the ability to solve the problem, in the case of the 3-bit

deceptive problem, it would appear that this landscape is relatively easy to solve,

therefore we need to examine a more difficult landscape to see if there is any ben-

efit associated with the introduction of the neutrality through the proposed layered

mapping.

10 3-bit Deceptive Problem

Figure 5.2, illustrates the off-line performance (average best fitness) achieved by

both the MGA and SGA per generation, over a 10 3-bit fully deceptive landscape.

The optimal fitness for this landscape is a value of 300. The results indicate that

the MGA’s primary structure allows the search to successfully locate the optimum.

However, the SGA struggles with the increased difficulty associated with the loosely

ordered problem and is drawn towards a local optimum. These findings would suggest

that the benefit of introducing a layered neutral mapping is similar to [62], where the

authors argued that neutrality is beneficial when it improves the likelihood of sampling

the global optimum.

Figure 5.3, represents this from a different perspective, by outlining the num-

ber of sub-functions discovered by both the SGA and MGA, with each sub-function

representing a loosely ordered three-bit problem as outlined in Chapter 2. The re-

sults indicate that the SGA never manages to locate the entire ten sub-functions,

whereas the MGA succeeds in discovering all ten sub-functions, which corresponds to
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Figure 5.2: Off-line Performance (Average Best Fitness) 10 3-Bit Deceptive Problem

the global optimum. To ensure that the results were statistically significant a t-test

analysis was carried with a 95% confidence interval, the result of which indicated that

the findings were statistically highly significant, with a p-value score of < 0.001.

Figure 5.3: Sub-Functions Discovered 10 3-Bit Deceptive Problem
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From the results outlined in Figures 5.2 and 5.3, the introduction of a modular,

non-trivial genotype-phenotype map appears to be beneficial in searching this par-

ticular class of problem. These results concur with Beaudoin [18] which found that

by introducing neutrality easier problems became more difficult and more difficult

problems became easier. To continue testing the efficacy of the proposed neutral

representation a changing landscape is now introduced and examines the adaptive

qualities of the MGA and its ability to maintain a balance between exploration and

exploitation.

Changing Landscape 10 3-bit Deceptive Problem

As seen from the experiments outlined above, the MGA possesses the capability

to solve problems over a relatively difficult deceptive static landscape. To observe the

effects of a changing environment the fitness function was altered at a predefined point

in the search. This changes the landscape and creates a new global optimum, which in

turn examines the adaptive qualities of the algorithms and ensures that an adequate

amount of exploration is maintained during the search. In testing the efficacy of the

MGA over a changing deceptive landscape, the aim is to increase our understanding

of the impact which the multi-layered genotype-phenotype map has on the balance

between exploration and exploitation, as the structure of this landscape should give

an advantage to the SGA. The reason for this is because the SGA gets drawn towards

the deceptive attractor in the first stage of the search and when the landscape changes,

the deceptive attractor becomes the new global optimum, therefore the SGA begins

the search closer to this point.
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Figure 5.4: Off-line Performance 10 3-Bit Changing Landscape

Figure 5.4 shows the off-line performance for both algorithms. Once the search

reaches the half way point (generation 12,500), the fitness function changes and the

landscape shifts where the global optimum prior to the changing of fitness functions,

switches and becomes the deceptive attractor of the new objective function. At this

point the SGA is closer to the new global optimum, while the MGA is located directly

on the deceptive attractor. As the search continues the SGA remains trapped on the

local optimum and fails to locate the optimum (maximum fitness value of 300). The

MGA however, succeeds in locating the global optimum before the landscape changes

and adapts to escape the local optimum allowing it to locate the new global optimum

after the landscape changes.

Figure 5.5, illustrates the number of sub-functions discovered and shows that in

the first half of the search, the SGA is drawn away from the global optimum and con-

verges on the deceptive attractor, solving only, on average, two sub-functions. The
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Figure 5.5: Sub-functions Discovered 10 3-Bit Changing Landscape

MGA on the other hand, continues probing the landscape and discovers the global

optimum, solving all ten sub-functions. When the landscape changes, the SGA is

closer to the global optimum as its performance was poor prior to the change in fit-

ness values, but remains trapped and fails to locate all ten sub-functions. While the

MGA continues to search after the landscape has changed and succeeds in optimising

the problem and solving all ten sub-functions. The results indicate that the lay-

ered representation included in the MGA improves the adaptability of the algorithm

over changing landscapes, maintaining a balance between exploration and exploita-

tion. The findings are similar to those of Ebner et al. [52, 51] who found neutrality

advantageous over changing landscapes.
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5.5 Test 2 - De Jong’s Test Suite

To continue examining the efficacy of the MGA, De Jong’s [43] test suite was

chosen as it is often used as a benchmark for GA performance. The results outlined

in the experiments below, illustrate both the average performance, that is the measure

of the average fitness of all members of the population (on-line performance), and the

average best performance, that is the average maximum fitness of the population (off-

line performance). The aim of Test 2 is to test the hypothesis (H2) The inclusion of

a biologically inspired, modular, fixed, non-trivial, multi-layered genotype-phenotype

map into a GA, can perform as robustly as a standard GA in optimising De Jong’s

test suite.

5.5.1 Test 2 Experiment Results

Parameters

The parameters used for the Test 2 experiments are as follows; a crossover rate of

0.70, a mutation rate of 1/l where l is the length of the genotype and a population

size of 200. The number of generations varied for each set of experiments and are

as follows: the Sphere Model ran for 100 generations, Rosenbrock’s function for 2000

generations, the Step function for 500 generations, the Quadratic function with noise

for 500 generations and finally Shekel’s function for 500 generations. The results of

the experiments carried out are each averaged over 50 runs and are discussed below.
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The Sphere Model (f1)

The results of the Sphere model (outlined in 2.6.1) experiments are shown in

Figure 5.6 and illustrate the findings for both the SGA and the MGA, showing the

off-line performance and on-line performance for each generation. The problem is

three dimensional and the optimum is achieved where x1 = 0, x2 = 0 and x3 = 0.

In the experiments conducted, both the SGA and the MGA easily locate the global

optimum.
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Figure 5.6: The Sphere Model - SGA & MGA.

Both the off-line and the on-line performance for the SGA are similar, indicating

that with the SGA, as the population converges towards the fittest individual, the

average is also converging towards the fittest level. The MGA’s off-line performance

is marginally better than that of the SGA and although not visible in the figures, the

earliest, on average, location of the optimum for the SGA is during generation 83,

while the global optimum for the MGA is located much sooner, on average during

generation 25. However, the MGA’s on-line performance falls short of the SGAs, due
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to the level of neutrality present in the MGA’s representation, indicating that the

inclusion of neutrality in the representation has had an impact on variation within

the population. Overall, the differences between the SGA and MGA on this problem

are negligible. A Wilcoxon rank sum test was used to test for statistical significance.

The statistical tests carried out on the on-line performances of both the SGA and

MGA were statistically highly significant, with a p-value < 2.2e−16. Similarly, the

statistical tests carried out on the off-line performances indicated that the results

were also shown to be statistically highly significant (p-value < 2.462e−15).

Rosenbrock’s Function (f2)

The second set of experiments were carried out over Rosenbrock’s function (out-

lined in 2.6.1), with the intention of testing the performance of the algorithms in

dealing with the direction of the search repeatedly changing. The global optimum for

this two dimensional problems is where x1 = 1 and x2 = 1. Figure 5.7 illustrates the

performance of both GAs. The global optimum is located by the SGA, on average

over the 50 runs, at generation 249 as the ridge is relatively easy to locate. The

difficulty associated with this function lies in its ability to converge. The on-line per-

formance of the population indicates the level of convergence. As was the case with

the Sphere Model experiments, the off-line and on-line performance converges as the

search progresses. Looking at the off-line performance of the MGA, it has located

the global optimum quite quickly (on average during generation 99). This compares

favourably with the SGA, indicating far fewer function evaluations for the MGA in

locating the optimum.
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Figure 5.7: Rosenbrock’s Saddle - SGA & MGA

Although the off-line performances are close, it is interesting to note that the on-

line performances appear quite similar for both the SGA and the MGA. One possible

reason for this is that due to the nature of the search space, convergence is not as easy

to obtain as was the case with the Sphere function, and both the SGA and the MGA

experience similar difficulties. Overall, the off-line and on-line performance for both

the SGA and the MGA are relatively similar over this search space. Statistical results

using a Wilcoxon rank sum test, show that both the on-line and off-line performances

of both GAs were statistically highly significant with a p-value < 2.2e−16.

Step Function (f3)

The Step function, discussed in 2.6.1, highlights an algorithm’s ability not to

get trapped on a plateau of local optima. From Figure 5.8 we see that the SGA

performs well and discovers the global optimum (with a fitness level of 30) on average

at generation 203, indicating the SGA’s off-line performance over the landscape.

Also, both the off-line and on-line performances for the SGA are almost identical
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Figure 5.8: Step Function - SGA & MGA

at an early stage in the search. However, the MGA discovers the global optimum,

on average, during generation 4, which is a significant improvement over the off-

line performance of the SGA. It would appear that the neutrality present in the

MGA representation is beneficial as it appears to improve the probability of sampling

the global optimum [63], by increasing exploration while still maintaining a balance

with exploitation. With regard to the on-line performance, there is little difference

between both algorithms over this problem domain. Again, the Wilcoxon rank sum

test illustrated that the SGA and MGA on-line and off-line results were statistically

highly significant (p-value < 2.2e−16).

Quadratic Function with Noise (f4)

The quadratic function with noise (outlined in 2.6.1) was designed to evaluate

the performance of an algorithm over a landscape which continuously changes due to

the presence of noise. The results of the experiments are shown in Figure 5.9 and

although difficult to identify, in the figure, the SGA’s best off-line performance occurs
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on average at generation 492, illustrating the difficulty associated with noise in the

search space. The on-line performance tends to vary per generation, again due to the

presence of noise.
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Figure 5.9: Quadratic Function with Noise - SGA & MGA

The performances both off-line and on-line for the MGA look quite similar to that

of the SGA, with the best off-line performance for the MGA occurring on average

at generation 440. However, the MGA recorded a higher off-line performance earlier

in the search, which may indicate that in the presence of noise, there may be a

benefit associated with the inclusion of the type of neutral representation introduced

by the MGA, as it improves the likelihood of reaching the global optimum [62]. It

may also indicate that through the dampening of the destructive effects of variation

operators, similar to [191, 207], the MGA representation may be beneficial in a noisy

environment. The statistical results, using a Wilcoxon rank sum test showed that

the off-line results of the SGA and MGA were statistically highly significant with a

p-value < 2.2e−16. However, the on-line results were not significant, with a p-value <

0.2034.



Chapter 5: Examining the Efficacy of a Multi-Layered GA 113

Shekel’s Foxhole’s Function (f5)

The final set of experiments compare both algorithms over Shekel’s Foxhole’s

function (outlined in 2.6.1), with the results illustrated in Figure 5.10. Both the SGA

and the MGA solved the problem; the SGA locates the global optimum, on average,

during generation 266, while the MGA, on the other hand, locates the global optimum

on average at approximately generation 50.
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Figure 5.10: Shekel’s Foxholes - SGA & MGA

The results indicate that there is a significant improvement in performance over

the multi-modal landscape of Shekel’s Foxholes when an element of neutrality is

incorporated into the representation. It appears that the MGA possesses the ability

to avoid getting trapped in local optima as it maintains a balance between exploration

and exploitation. One possible reason for this could be that the neutrality introduced

through the multi-layered mapping, reduces the impact of operators such as mutation,

similar to [191, 207] as only adaptive mutation alters fitness, silent mutations maintain

diversity [205], assisting exploration and proves beneficial in avoiding getting stuck
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in a local optima as the search progresses. By partially insulating against the effect

of the operators the translation table assists in maintaining within the population,

valuable building blocks, allowing escape routes from local traps to be found [54].

Overall, the MGA has both a better off-line and on-line performance over the SGA

for the type of search space produced by Shekel’s function. The results of both GAs

were statistically highly significant as a Wilcoxon rank sum test returned a p-value

< 2.2e−16, for the on-line and off-line performances of the SGA and MGA.

5.6 Chapter Summary

The experiments outlined in this chapter were designed to test the efficacy of

the MGA whose genotype-phenotype mapping introduces neutrality into the repre-

sentation, over deceptive landscapes, changing deceptive landscapes and De Jong’s

test suite. The Test 1 experiments were designed to test the hypothesis H1 Includ-

ing a biologically inspired, multi-layered, many-to-one genotype-phenotype map into

a GA, benefits searching fully deceptive changing landscapes. The experiments moved

from a basic 3-bit fully deceptive problem to a loosely ordered 10 3-Bit fully decep-

tive problem and finally, to a 10 3-bit fully deceptive changing landscape problem,

with results indicating that the proposed multi-layered genotype-phenotype map is

effective in solving the deceptive problems presented. The results found that there

was little benefit, if any, of introducing neutrality for the 3-bit deceptive problem,

mainly due to the relative ease of the problem, as found in Collins [34]. These results

also correspond with Beaudoin et al. [18], who found that as the level of difficulty

increased so too did the benefit of including neutrality and Doerr et al. [49], who
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found that neutrality was possibly beneficial over more difficult deceptive landscapes

with multiple local optima as run-time reduced from exponential to polynomial. Fur-

thermore, the MGA representation appears to be structured in a way that improves

the likelihood of sampling the optimum [62], combined with the dampening of the

destructive effects of mutation [191, 207]. Therefore, as the problems moved from

static deceptive problems; to more difficult deceptive problems; to dynamic deceptive

landscapes, the benefits associated with the inclusion of the mapping continued to in-

crease. The Test 1 results indicate that the benefits associated with the multi-layered

the stated hypothesis (H1) is supported.

To continue examining the efficacy of the MGA, Test 2 experiments were designed

to test the following hypothesis H2 The inclusion of a biologically inspired, modular,

fixed, non-trivial, multi-layered genotype-phenotype map into a GA, can perform as

robustly as a standard GA in optimising De Jong’s test suite. The experiments con-

ducted for Test 2 show that the MGA performed as robustly as the SGA. However, for

the characteristics present by the Sphere function, the Rosenbrock function, the Step

function and the Quadratic function, the benefit of neutrality is not apparent at first

sight and for many it is negligible, but this was not the case for the Shekel’s Foxholes

experiments, where the introduction of neutrality into the genotype-phenotype map-

ping allowed the MGA to outperform the GA. A possible reason for this is that the

neutrality introduced through the multi-layered mapping, reduces the impact of op-

erators such as mutation and crossover and slows genetic drift, as found in [191, 207].

It also seems, from the results presented, that the level of problem difficulty is a

significant factor in deciding whether or not the inclusion of the MGA’s neutral rep-
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resentation would be beneficial, which concurs with [18]. The results of Test 2 indicate

the hypothesis proposed (H2) is supported.

In summary, this chapter has illustrated and established the efficacy of the multi-

layered GA (MGA) and that the MGA outperformed the SGA over the more difficult

problems and illustrates its advantages over a deceptive changing landscape. Com-

bined with the dampening of the effects on mutation as only adaptive mutation alters

fitness, with silent mutations maintaining diversity [205], which assists exploration

and appears beneficial as the search progresses. This change in variation is critical

and as the proposed mapping was designed to maintain variation and increase variabil-

ity, a question remains as to what their impact is on the search process. Maintaining

variation and inducing variability are also possible reasons as to why the proposed

mapping proved beneficial over the class of problems tested, but to isolate their im-

pact, further experimentation is required. To begin to understand the influence of

the introducing a neutral mapping into the representation of a GA on variation and

its impact on influencing variability, an examination of diversity, both at a genotypic

and phenotypic level is required. With this in mind the focus of the next chapter,

Chapter 6, is on the impact of the proposed mapping on population variation.



Chapter 6

Examining Population Variation in

a Multi-layered GA.

6.1 Introduction

Results from Chapter 5 established the efficacy of the MGA and indicated that

the presence of neutrality within the primary structure of a GA was beneficial in

searching more difficult and changing landscapes. However, as the proposed many-

to-one neutral mapping was designed to maintain variation and increase variability,

these characteristics need to be examined to establish reasons as to why the MGA

performed well over the class of problems chosen. This chapter examines the varia-

tion associated with both the SGA and the MGA. Variation can be described as the

difference between individuals in a population and in this dissertation, is interpreted

as the level of diversity present in the population. The chapter, using a number of

experiments, examines the impact on variation caused by the inclusion of the pro-
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posed neutrality within the primary structure of a GA. The chapter focuses on the

maintenance of diversity within the population, problem difficulty and inducing phe-

notypic variability. Extracts of this chapter are taken from [88, 90] and the chapter

is laid out as follows: Section 6.2 gives an overview of the experiments, Section 6.3

describes Test 3 and examines the impact on variation of altering the level of prob-

lem difficulty on population diversity over a number of fully deceptive landscapes.

Section 6.4 outlines Test 4 and includes a number of well known problems, where the

degree of dimensionality is altered to increase the level of difficulty associated with

each problem and examines the effects on variation. Finally, Section 6.5 summarise

and concludes the chapter.

6.2 Variation Experiments Overview

The experiments conducted in this chapter are separated into two tests, Test 3 and

Test 4. Test 3 accesses the levels of variation present in the population and its impact

on variability, with experiments carried out over deceptive and changing deceptive

landscapes, that is the 3-bit, 10 3-Bit and changing 10 3-Bit deceptive landscapes.

These experiments can be viewed as an extension to those carried out in Chapter 5,

but focus on variation rather than efficacy. Test 4 looks at the relationship between

variation and problem difficulty and examines the impact on variation of changes in

the degree of problem difficulty over a number of well understood problems. The

problems chosen were the Sphere function [43] as outlined in Section 2.6.1 and a

changing Sphere function [94], described in Section 2.6.2. The aim of the chapter is

to gain a better understanding of how the proposed genotype-phenotype mapping,
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included in the MGA, impacts on variation in the population, and whether this assists

in searching the search space of the selected landscapes.

6.3 Test 3 - Inducing Phenotypic Variability

Test 3 examines a number of fully deceptive, noisy and dynamic problems. The

aim of Test 3 is to examine the impact on population diversity caused by the proposed

MGA representation. Put another way, how does the inclusion of neutrality, resulting

from the MGA’s genotype-phenotype map, impact on population variation. Test 3 is

designed to test the following hypothesis (H3): Diversity, implicitly maintained by a

many-to-one, genotype-phenotype mapping of a GA, implemented by an interpretation

of the biological processes of Transcription and Translation, is beneficial in searching

noisy and dynamic landscapes. The experiments used for Test 3 are as follows:

• 3-bit fully deceptive experiments [65]

• 10 3-bit fully deceptive experiments [73]

• 10 3-bit changing landscape fully deceptive experiments [87]

For each group of experiments, diversity is calculated at both a genotypic and

phenotypic level using pair-wise hamming distance in order to gain an understanding

to the level of variation present in the topology. For comparison purposes, the data

was normalised on the hamming distance measurements and uses a scale of 0 to 1,

with 0 indicating convergence and 1 indicating maximum diversity.
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6.3.1 Test 3 Experiment Results

Parameters

The experiments were conducted with a population of 200, apart from the 3-bit

deceptive problem, which because of its limited search space, had a population size

of 20. The population size of 200 was chosen to ensure adequate exploration of the

search space and give both GAs a reasonable chance of success. A crossover rate of

0.7 and a mutation rate of 1/l, where l is the length of the chromosome were used.

The 3-bit experiment was run over 100 generations and averaged over 10 runs. The

10 3-bit deceptive problem over 3000 generations and averaged over 10 runs and the

changing 10 3-bit deceptive problem over 25000 generations and averaged over 10

runs. The results of Test 3 are outlined below.

3-bit Deceptive Problem

To develop an understanding of what effect the MGA genotype-phenotype map

would have on variation, the diversity of both the SGA and MGA are monitored. The

results of the 3-bit deceptive problem [65] (outlined and discussed 5.4.1) indicate that

for both the SGA and MGA the landscape was relatively easy for both algorithms.

Figure 6.1 illustrates the level of genotypic and phenotypic diversity in the population

for both the MGA and a SGA. The SGA, with a one-to-one genotypic-phenotypic

representation, converges very quickly and diversity, both genotypic and phenotypic

diversity are the same, apart from the efforts of the mutation operator. In relation

to variation, once convergence has occurred the result is a lack of both genotypic

and phenotypic variation. The MGA, through the modular, non-trivial mapping,
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maintains a level of diversity within the primary structure resulting in a maintained

level of variation. Figure 6.1 illustrates the presence of variation both at a genotypic

level and to a lesser extent, at a phenotypic level. These results in relation to the

maintenance of diversity, are similar to results reported by Yu and Miller [205] and

Banzhaf [10].

Figure 6.1: Genotype/Phenotype Diversity 3-Bit Deceptive Problem

A paired t-test was used to determine if the results of the hamming distance exper-

iments between the SGA and the MGA. The results of the paired t-test between the

normalised SGA phenotype data and the normalised MGA phenotype data indicated

that the true difference in means is not equal to 0 and the p-value was 0.001656, in-

dicating the results were statistically significant (p > 0.001). The result of the paired

t-test carried out on the SGA genotype and the MGA genotype returned a p-value

< 2.2e−16 indicating that the results were statistically highly significant (p < 0.001).

For each experiment, the results of the t-test analysis with a 95% confidence interval,
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indicates that the result of the 3-bit deceptive problem hamming distance experi-

ments were highly statistically significant with p < 0.001 for the SGA genotype and

the MGA genotype tests, indicating that both genotypes differ statistically. These

results were not as significant p > 0.001 (but still significant) for the SGA phenotype

and the MGA phenotype tests, indicating that the SGA phenotype and the MGA phe-

notype are similar, apart from the impact of mutation. Overall the landscape proved

very easy for both algorithms, with the SGA performing better than the MGA, even

though the MGA maintained more variation. The conclusion here, which is similar

to that reported by Beaudoin et al. [18], is that over easier landscapes the benefit of

including neutrality is diminished. The next set of experiments, examine the impact

of increasing the level of problem difficulty on population variation.

10 3-bit Deceptive Problem

As the efficacy experiments indicated that problem difficulty was a relevant fea-

ture, the 10 3-bit fully deceptive problem [73] increases the level of problem difficulty

and results outlined in 5.4.1 indicate that the landscape was misleading for the SGA,

while the MGA optimises the fully deceptive topology. Figure 6.2, highlights both the

genotypic and phenotypic diversity associated with both the SGA and MGA. Again,

because of the one-to-one representation and genotype-phenotype map present in the

SGA, both the genotypic and phenotypic diversity are the same. The SGA’s geno-

typic and phenotypic diversity converges early on, as it is drawn towards the deceptive

attractor, indicating a lack of variation within the population. The MGA’s perfor-

mance improves on that of the SGA, as a level of diversity, both phenotypic and
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to a greater extent genotypic, is maintained throughout the search. Variation is also

greater when compared to the 3-bit problem, as the variational topology changes. The

ability to maintain, implicitly, a level of diversity through the genotype-phenotype

map increases the level of variation. This increase in variation appears to assist in

searching the more difficult landscape, as the MGA exhibits the ability to repeatedly

locate the optimum solution where the SGA fails, indicated by the results of the 10

3-bit deceptive experiments. One reason for this is that the layered mapping, while

maintaining variation through a slowing of genetic drift caused by neutrality, induces

variability, allowing paths over neutral networks to be discovered, thereby allowing

the escape from the deceptive attractor, in a similar manner to findings reported by

Elgin [54].

Figure 6.2: Genotype/Phenotype Diversity 10 3-Bit Deceptive Problem
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Changing Landscape 10 3-bit Deceptive Problem

The results from the efficacy experiments indicated, the adaptability of the MGA

showed significant advantage over the more difficult deceptive changing landscapes.

The following experiment, examines variation in order to seek an explanation for the

improved performance associated with the MGA. Over the changing 10 3-bit decep-

tive landscape, results discussed in Section 5.4.1, show that the MGA successfully

managed to locate the global fitness, where the SGA struggled. Testing the MGA

over a changing deceptive landscape aims to further increase our understanding of

the impact the multi-layered genotype-phenotype map has on variation, genetic drift

and variability. The structure of this landscape should be advantageous to the SGA,

as the SGA gets drawn towards the deceptive attractor in the first stage of the search

and at the point at which the landscape changes, the deceptive attractor becomes the

new global optimum. Because of this the SGA should begin the search closer to the

optimum.

Figure 6.3 indicates that both the SGA’s genotypic and phenotypic diversity

disappears early on as the population convergences. However, with the MGA, we

have increased variation brought about by the introduction of neutrality through the

genotype-phenotype map which implicitly maintains a level of diversity in the pop-

ulation. A t-test analysis with a 95% confidence interval was used and the results

of the hamming distance experiments were shown to be statistically significant. The

results suggest that by implicitly maintaining diversity within the population through

the multi-layered genotype-phenotype mapping, the MGA increases variation and as

reported by Ebner et al. [51, 52], the maintaining of diversity can be advantageous
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Figure 6.3: Genotype/Phenotype Diversity 10 3-Bit Changing Landscape

in a changing environment.

6.4 Test 4 - Altering Dimensionality

Having examined the impact on variation over static and dynamic fully deceptive

landscapes. The aim of Test 4 is to vary the degree of problem difficulty by altering

the dimensionality for each problem and measure it’s impact on population variation.

The experiments used in Test 4 were created to test the following hypotheses:

• (H4) Introducing neutrality into the representation of a GA, through a modu-

lar, fixed non-trivial mapping, is beneficial in searching static landscapes with

varying levels of difficulty.

• (H5) Including a modular, fixed non-trivial genotype-phenotype map which in-

troduces a more flexible phenotypic structure and a higher degree of phenotypic
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variation through the use of neutrality, benefits the optimisation of solutions

over dynamic landscape problems.

The experiments to test H4 are carried out over the Sphere Model [43] and the

experiments to test H5 are run over the changing Sphere Model [94].

6.4.1 Test 4 Experiment Results

Parameters

The experiments were carried out with a population of 400 and the parameter

values used the experiments for both of the GAs are as follows; crossover rate Pc = 0.7,

mutation rate Pm = 1/l, where l is the length of the chromosome. The Sphere Model

experiments ran for 2000 generations and the changing environment experiments ran

for 4000 generations.

Sphere Model Static Environment

The Sphere Model [43] outlined in 2.6.1, is relatively easy to optimise as it is

continuous, convex and unimodal. This function is normally used to measure the

efficiency of a particular algorithm. The nature of the problem allows the ability

to altered the number of dimensions (n) associated with the Sphere Model, in order

to vary the level of difficulty and to examine the impact of dimensionality on the

algorithms. Experiments on the Sphere Model were carried out where n = 3, n = 15

and n = 30.
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Sphere Model - Dimensions n = 3

Results of the first experiment of Test 4 carried out on the Sphere Model are out-

lined in Table 6.1 and shows the percentage of times the global optimum is located

by the SGA and MGA, along with the average number of runs required to locate the

global optimum. The results are averaged over the number of successful runs where

the number of dimensions n = 3 and illustrate the impact on the performance of the

algorithms over the Sphere Model function.

Sphere Model Results

Number of Dimensions n = 3

GA Description SGA MGA

Optimum Located 100% 100%

Avg. No. Generations Required 5 22

Table 6.1: Sphere Model Experiment n = 3
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When the number of dimensions n is set to 3 the problem is extremely easy for

the SGA and the MGA, with both achieving 100% success in locating the global

optimum. The SGA locates the optimum on average after only 5 generations and

the MGA takes on average 22 generations (see Table 6.1). One possible reason for

this is that an adequate level of diversity in the population exists early in the search

and that due to the relative ease of the problem, the SGA on average, locates the

global optimum before the MGA. Results reported by Doerr et al. [49] carried out

over a unimodal landscape on the effects of incorporating neutrality, suggest that

there was no significant advantage of using neutrality. The level of diversity in the

population for both the SGA and the MGA is shown in Figure 6.4. It should be

noted that the SGA’s level of genotypic and phenotypic diversity are one and the

same, due to the one-to-one genotype-phenotype mapping, whereas the genotype

diversity and the phenotype diversity of the MGA differ because of the nature of the

neutral genotype-phenotype mapping. Another consideration is that the introduction

of neutrality comes at a cost, as there is extra computational overhead required due

to the increase in the search space. Which means that any additional benefit may

be outweighed by the additional overhead [63], this is particularly relevant for less

difficult landscapes.

Sphere Model - Dimensions n = 15

When the number of dimensions are increased to 15, the level of difficulty increases

for both GAs. Looking at Table 6.2, the level of difficulty can be seen in the average

number of generations taken to locate the global optimum. In this experiment both
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the GAs obtained a 100% success rate. However, the SGA needs an average of 1014

generations, while the MGA needs an average of 359 generations, indicating that the

increase in dimensionality has increased the level of difficulty for both GAs, but the

effect is more pronounced for the SGA. This may be due to the lack of diversity within

the population as illustrated in Figure 6.5, which impacts on variation and variability.

Sphere Model Results

Number of Dimensions n = 15

GA Description SGA MGA

Optimum Located 100% 100%

Avg. No. Generations Required 1014 359

Table 6.2: Sphere Model Experiment n = 15
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Figure 6.5: Sphere Model Population Diversity n = 15 - SGA & MGA

Looking at Figure 6.5, the population for the SGA converges quite early in the

search and this may account for the average number of generations required to locate
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the global optimum. However, as the level of difficulty increases through an increase

in the number of dimensions, the level of variation within the MGA’s genotypic pop-

ulation increases, which appears beneficial in searching the given space. As Wagner

[191] suggests, neutrality assisted in sheltering a system form the impact of mutation

and argued that new adaptations, provided by neutrality, can assist the search. The

results also indicate that as the level of problem difficulty increases, the benefit of

including neutrality also increases, which is similar to findings reported by Beaudoin

et al. [18]. By dynamically maintaining variation the MGA offers the potential to

induce variability, thereby optimising the problem in fewer function evaluations.

Sphere Model - Dimensions n = 30

In the final Sphere Model experiment, the number of dimensions were increased

to 30. The effect of this can be seen in Table 6.3 and Figure 6.6. This increase in the

number of dimensions has had a significant impact on both of the GAs, but again

the SGA’s performance shows the largest drop off in performance. The SGA only

succeeded in locating the global optimum 80% of the time, while the MGA continues

with a 100% success rate.

The other interesting result here can be found in the average number of generations

required to locate the optimum, with the SGA requiring, on average, 1681 generations

(with the average based on those generations that located the optimum), while the

MGA needed, on average, 1007 generations. This is a significant improvement in

performance on the part of the MGA when compared to that of the SGA. It would

appear that as outlined by Ebner et al. [51, 52], higher levels of mutation could be
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sustained by having neutral networks present, which assists in searching more difficult

landscapes.

F1 Sphere Model Results

Number of Dimensions n = 30

GA Description SGA MGA

Optimum Located 80% 100%

Avg. No. Generations Required 1681 1007

Table 6.3: Sphere Model Experiment n = 30
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Figure 6.6: Sphere Model Population Diversity n = 30 - SGA & MGA

The results reported indicate that searching a landscape where the dimension-

ality has increased, may be assisted by maintaining an element of variation in the

population, offering the possibility to induce variability. Figure 6.6 shows an implicit

level of genotypic diversity being maintained in the population of the MGA. This

may indicate that the improvement in performance is due to useful variation being

maintained in the population of the MGA [205], inducing variability. The figure illus-
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trates that the SGA’s level of Genotype/Phenotype diversity decreases quickly, while

for the MGA, although the level of phenotypic diversity diminishes relatively quickly,

it always appears marginally higher than that of the SGA as genetic drift associated

with the MGA population slows [54], due to the amount of variation maintained by

the MGA as a result of the many-to-one genotype-phenotype mapping.

Sphere Model Changing Environment Results

The changing Sphere environment [94] and outlined in Section 2.6.2, has at its

heart the Spear model as outlined in [43]. However, the idea is to allow the GAs to

search the landscape defined by the sphere model and to then change the function

values after 1500 generations, so that the landscape also changes. The aim of this

set of experiments is to examine how both the SGA and MGA adapt in a changing

landscape environment. The experiments on the Changing Sphere Model were carried

out where n = 3, n = 15 and n = 30.

Changing Sphere Model - Dimensions n = 3

The results of the first changing Sphere Model experiment are shown in Table 6.4,

which shows the percentage of success after the objective function changes. As the

dimension level n is set to 3, the problem landscape is relatively easy for both the

SGA and the MGA, with both algorithms succeeding 100% of the time. However,

the MGA discovers the global optimum in the changing landscape in an average of

1543 generations, which is an improvement in performance over the SGA, which took

an average of 2522 generations, indicating that the neutral representation may be

beneficial over a changing landscape, as reported by Ebner [51, 52].
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Sphere Model Changing Environment

Number of Dimensions n = 3

GA Description SGA MGA

Optimum Located 100% 100%

Avg. No. Generations Required 2522 1543

Table 6.4: Sphere Model Changing Environment Experiments Dimensions n = 3
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Figure 6.7: Sphere Model Changing Environment Diversity n = 3 - SGA & MGA

Figure 6.7 illustrates the population diversity for both the SGA and the MGA

where n = 3. The diversity is similar to that of the first Sphere Model experiment

where n = 3, as the problem is relatively easy for both algorithms, both before

and after the landscape changes. However, due to the level of problem difficulty this

change hardly registers within the population variation remaining relatively constant.
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Changing Sphere Model Dimensions n = 15

By changing the number of dimensions to n = 15, Table 6.5 indicates that the SGA

is finding it difficult to cope with the changing environment when problem difficulty

increases due to the increase in the level of dimensionality. The SGA only manages

to succeed in locating the new global optimum 20% of the time after the landscape

changes and when it did locate it the average number of generations required was

2939. The MGA, on the other hand, was able to locate the global optimum 100% of

the time and the average number of generations required was 2182. Again as with

previous experiments, the presence of neutrality appears to make easier problems

more difficult and harder problems easier [18]. Also the presence of neutrality slows

convergence [36], which appears to benefit more difficult changing landscapes.

Sphere Model Changing Environment

Number of Dimensions n = 15

GA Description SGA MGA

Optimum Located 20% 100%

Avg. No. Generations Required 2939 2182

Table 6.5: Sphere Model Changing Environment Experiments Dimensions n = 15

The population variation as, illustrated in Figure 6.8, shows the SGA converging

early on in the search as the diversity disappears from the population. The MGA

population continues to maintain a level of diversity and the genotypic level and to

a lesser extent at the phenotypic level. The level of diversity contained in the MGA
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Figure 6.8: Sphere Model Changing Environment Diversity n = 15 - SGA & MGA

population begins to increases at the genotypic level, when the search commences and

then continues to dynamically maintain diversity within the population. Once the

landscapes changes, the level of diversity drops and begins increasing again. It then

maintains a degree of diversity within the population. One reason for this is that

the genotype-phenotype mapping allows for a many-to-one relationship between the

genotype and the phenotype, thereby increasing the variation and inducing variability

[36], affording the MGA the ability to maintain a balance between exploration and

exploitation and adapt in a changing environment.

Changing Sphere Model - Dimensions n = 30

The final experiment in the changing environment experiments, saw the level of

dimensionality n increasing from 15 to 30. With this level of difficulty the SGA was

unable to locate the global optimum after the landscape changed, illustrated by 0%

in Table 6.6. The MGA, however, did locate the new global optimum 100% of the
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time, with an average number of generations of 3189 required (see Table 6.6).

Sphere Model Changing Environment

Number of Dimensions n = 30

GA Description SGA MGA

Optimum Located 0% 100%

Avg. No. Generations Required N/A 3557

Table 6.6: Sphere Model Changing Environment Experiments Dimensions n = 30
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Figure 6.9: Sphere Model Changing Environment Diversity n = 30 - SGA & MGA

When we examine the population diversity shown in Figure 6.9 we can see a simi-

lar pattern to the previous experiments, in that the SGA population variation disap-

pears in the search and the MGA, through it’s multi-layered mapping, dynamically

maintains a level of variation within the population. One other interesting feature

associated with the dynamic nature of diversity maintenance within the MGA popula-

tion, is that the normalised levels of diversity tend to increase as the level of difficulty
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increases. Comparing Figures 6.7, 6.8 and 6.9, it appears that the MGA’s level of

diversity is increasing in response to the level of difficulty. This dynamic adjustment

of diversity would appear a useful characteristic in attempting a search of more dif-

ficult dynamic environments, giving the MGA a robustness similar to that found by

Wilke [201]. One possible reason for this is that as neutrality dampens the influence

of variation operators, genetic drift slows and variation is maintained within the pop-

ulation. These findings exhibit similarities to previous findings [18, 52, 51, 205, 206],

in relation to the benefits of neutrality over more difficult and changing landscapes.

6.5 Chapter Summary

The experiments outlined in this chapter were designed to examine the varia-

tion in a multi-layered GA. Test 3 - Inducing Phenotypic Variability experiments,

use static and dynamic deceptive problems to test the following hypothesis H3 Di-

versity, implicitly maintained by a many-to-one, genotype-phenotype mapping of a

GA, implemented by an interpretation of the biological processes of Transcription and

Translation, is beneficial in searching noisy and dynamic landscapes. The experiment

results indicated that as problem difficulty increased so too did the benefit of includ-

ing neutrality and that easier problems seemed harder and harder problems seemed

easier, as described by Beaudoin [18]. One reason for the easier problems being more

difficult relates to the additional computational overhead associated with neutrality

[63]. The results also found that the maintenance of diversity within the population,

caused by the dampening of impact from variational operators slowed genetic flow and

was beneficial in searching the search space, particularly over changing landscapes.
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The results produces exhibit similarities to findings presented in previous work on

variation and neutrality [51, 52, 205, 206], all be it using a different representation.

The representation presented dictates the effect on genetic flow, which regulates the

level of variation and appears to vary according to level of difficulty present in the

landscape. In many ways the findings from the experiments are in ways, similar to

biological studies carried out by King and Dukes [113] who argue that much of the

evolution of proteins is down to neutral mutations and genetic drift. Overall the

results of the Test 3 experiments indicate that the hypothesis (H3) is supported.

The first part of Test 4 - Altering Dimensionality results, examines, over a static

unimodal, the hypothesis (H4) Introducing neutrality into the representation of a GA,

through a modular, fixed non-trivial mapping, is beneficial in searching static land-

scapes with varying levels of difficulty. The results of the static unimodal experiments

illustrated that as problem difficulty increased, the performance of the neutral repre-

sentation contained in the MGA proved beneficial in searching the search space and

illustrated the MGAs robustness. The findings in relation to variation were similar to

past research, in that silent mutation is neutral and doesn’t affect the fitness value.

However, it does maintain diversity in the population and this can assist exploration

[206]. The static unimodal results indicated that stated hypothesis (H4) is supported.

The second part of Test 4 uses a dynamic unimodal problem to test the hy-

pothesis (H5) Including a modular, fixed non-trivial genotype-phenotype map which

introduces a more flexible phenotypic structure and a higher degree of phenotypic

variation through the use of neutrality, benefits the optimisation of solutions over dy-

namic landscape problems. The results can be likened to Wilke et al. [201], who
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argued that neutrality provides robustness and that the dynamic unimodal experi-

ments illustrated the robustness of the MGA in the face of a changing landscape. The

findings highlighted the benefits associated with the type of neutrality introduced by

implementations of transcription and translation, increase as the level of difficulty

increases and are more pronounced over a changing landscape. The results concur

with previous work showing that the presence of neutral networks offer the MGA the

ability to optimise difficult dynamic landscapes [18, 51, 52, 63, 205, 206]. Results from

both parts of Test 4 were positive and the stated hypothesis (H5) was supported.

This chapter examined the levels of variation present in population. The exper-

iments outlined in Test 3 and Test 4 were designed to focus on the impact of the

proposed genotype-phenotype map on population variation. The tests were created

to develop an insight into why the MGA performed well over more difficult static and

dynamic landscapes. For both tests the results indicate that through the level of neu-

trality contained in the mapping, diversity is implicitly maintained within the MGA

population, with the level of diversity maintained at a genotypic level increasing as

the level of problem difficulty increased, offering the possibility of increased variabil-

ity. Having examined the impact of the genotype-phenotype mapping on variation

and variability, the next step is to gain a better understanding of the accessibility of

phenotypes from genotypes and to further examine the effect of neutrality with regard

to the genotype-phenotype mapping. The following chapter, Chapter 7, examines the

impact of altering the arity of a multi-layered GA and examines the accessibility of

phenotypes from genotypes.



Chapter 7

Examining the Arity of a

Multi-layered GA

7.1 Introduction

The aim of this chapter is to examine the arity of the multi-layered genotype-phenotype

mapping contained in the MGA, in order to develop an insight into the impact of

changing the accessibility of phenotypes from genotypes. To achieve this, a number

of experiments were carried out to examine the effect of altering the accessibility

and to continue to examine the impact of neutrality in relation to the mapping from

genotype to phenotype. The chapter also introduces a variation operator within the

layers of the genotype-phenotype map, loosely based on missense mutation as found

in nature.

In a SGA, variation is applied solely to genetic structures and not to phenotypic

structures and each phenotype is represented by a distinct genotype. However, in

140
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nature we find a layered mapping between the genotype and the phenotype, where

a single phenotype can be represented by a number of different genotypes. Also in

nature, although most variation happens at the DNA level, mutation can also occur

at the RNA level. By introducing a many-to-one genotype-phenotype map and a

Missense mutation operator into a GA you can create a basic implementation of these

phenomena. Extracts in this chapter are taken form [91]. The chapter is organised

as follows: Section 7.2 outlines the process of tuning the MGA’s genotype-phenotype

map, Section 7.3 gives an overview of the experiments carried out, and Section 7.4

describes the results of Test 5, while Section 7.5 concludes.

7.2 Tuning the MGA Arity

The MGA introduces a tunable, modular, multi-layered genotype-phenotype map,

which allows a haploid GA to exhibit, some of the characteristics normally associated

with a diploid i.e. a mechanism for allowing alleles or combinations of alleles which

proved useful in previous generations [76], this can be viewed as maintaining a form

of long term memory, without the need to develop a dominance scheme. The MGA

population consists of a population of haploid individuals, which allows for the use

of traditional crossover and mutation operators on the genotype. This differs from

the approach used by diploid GAs (DGAs) as outlined by Goldberg [76], where each

individual has two chromosomes and crossover is divided into two steps and mutation

is viewed as being neutral. Another difference between the MGA mapping and that

of a DGA, is that in the DGA, a phenotype allele is made up from a single genotype

allele which is expressed. In the MGA, a single phenotype allele is made from the
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cardinality incorporated in the genotype. In this chapter a number of different cardi-

nalities are examined through the use of different representation mappings. Although

the MGA’s genotype-phenotype map is non-deterministic, the approach differs from

that of real-coded binary representation, which incorporate a gene-strength adjust-

ment mechanism [115]. Real-coded binary representations can use standard crossover

operators, but mutation is implicit due to the gene-strength adjustment mechanism

[115].

The MGAs used in the dissertation are tuned using three different representation

mappings in order to examine the impact of altering the arity: a 4-bit MGA repre-

sentation; a 6-Bit MGA representation and an 8-Bit MGA representation. The size

of the translation table is determined by the representation chosen. For a 4-bit MGA

representation, a translation table of 24 is created; with a 6-bit MGA representation, a

26 translation table is needed and with an 8-bit MGA representation, a 28 translation

table is required. The size of the translation table represents the granularity of neu-

trality which exists within the representation. A 4-bit MGA representation requires

4 bits for each individual element of the phenotype, which we refer to as a phene; a

6-bit MGA representation requires 6 bits for each phene and an 8-bit representation

requires 8 bits for each phene. The arity controls the granularity contained in the

representation mappings, with a 4-bit representation containing a coarser granularity

that an 8-bit representation. A form of neighbourhood equivalence [176] is used in

the translation phase, to map a predefined number of characters to a given phene,

in this dissertation, phenes represent either a 0 or a 1. Figures 4.3, 4.4 and 4.5 in

Section 4.4.4 represent a 4-bit MGA representation, a 6-Bit MGA representation and



Chapter 7: Examining the Arity of a Multi-layered GA 143

an 8-bit MGA representation, respectively. The Missense mutation operator is out-

lined in Section 4.4.3, and is operated within the layers of the genotype-phenotype

mapping.

7.3 Arity Experiments Overview

The chapter examines the impact of varying the level of neutrality by altering

the granularity of the representation, which changes the accessibility of phenotypes

from genotypes. In a simplified summary of the biological process, the pathway from

DNA to a protein includes a transcription stage, which maps DNA to RNA and a

translation stage, which maps RNA to proteins. Altering the arity allows the tuning

of the level of neutrality present in the genotype-phenotype mapping. By altering the

arity of the genotype-phenotype mapping, the experiments conducted, examine the

impact of altering the size of the translation table, as evolution is heavily influenced

by neutral mutations and genetic drift [113]. Experiments are also carried out to

examine the impact of including a transcription phase in the mapping over more

difficult dynamic landscapes. Finally, the experiments attempt to illustrate whether

or not, there are benefits associated with the inclusion of variation within the layers of

the genotype-phenotype map. Variation within the layers of the genotype-phenotype

map is achieved through an implementation of a form of variation operator found in

biology, known as Missense mutation. 1

The chapter sets out to test the following hypotheses relating to variability in the

1In biology, a point mutation that changes a codon that normally specifies a particular amino
acid into one that codes for a different amino acid is known as a missense mutation.
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population:

• (H7) Altering the level of granularity, alters the size of the translation table and

impacts on the search over more difficult dynamic landscapes.

• (H8) The benefit of including a Transcription phase in a many-to-one, genotype-

phenotype mapping, increases as the level of problem difficulty increases over

more difficult dynamic landscapes.

• (H9) An interpretation of Missense mutation, included within the layering of

a biologically inspired, multi-layered genotype-phenotype mapping GA, assists

searching more difficult dynamic landscapes.

7.4 Test 5 - Altering the Arity

The Test 5 experiments were carried out over a variety of static unimodal OneMax

[159] problem landscapes and a number of multi-modal deceptive changing landscapes

[73, 87]. The landscapes chosen for experimentation were as follows:

• 30-bit OneMax Problem [159]

• 90-bit OneMax Problem [159]

• 10 3-bit Deceptive Changing Environment [87]

• 30 3-bit Fully Deceptive Deceptive Changing Landscape [87]

In order to examine the accessibility of phenotypes from genotypes, the rela-

tionship between altering the granularity of the MGA representation and problem
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difficulty are examined, with experiments being carried out over increasingly more

difficult landscapes. The OneMax problem experiments include 30-bit and 90-Bit

problems, while the deceptive changing landscape experiments use a 10 3-bit loosely

ordered fully deceptive changing landscape and a more difficult 30 3-bit loosely or-

dered fully deceptive changing landscape.

7.4.1 Test 5 Experiment Results

Parameters

The parameters for the experiments are as follows: one-point crossover is used at

a rate of 0.7, single-point mutation is used at a rate of 1/l, where l is the length of

the chromosome and missense mutation is at a rate of 5/r where r is the length of the

RNA string. The population consisted of 200 individuals, with the experiment results

averaged over 10 runs. The 30-bit OneMax experiments were run over 50 generations

and the 90-Bit OneMax experiments were run over 100 generations. While the 10

3-bit changing deceptive problem and the 30 3-bit changing deceptive problems were

run over 5000 and 7000 generations respectively.

30-bit OneMax Problem

Figure 7.1 compares the average-best (off-line) and the average (on-line) perfor-

mance of an SGA against a number of different MGA representations over a 30-bit

OneMax problem. Although there is little difference in the performance of the SGA

against that of the variously tuned MGAs, the SGA’s performance is marginally bet-

ter when looking at the off-line results and it’s on-line performance, is a result of
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convergence within the population and the impact of mutation. The MGA results

suggest that, similarly to what was reported by Galván-López and Poli [63], that

there is little advantage in using neutrality over a relatively easy unimodal OneMax

problem.

 16

 18

 20

 22

 24

 26

 28

 30

 0  10  20  30  40  50

F
itn

es
s

Generations

30-bit One Max - Online/Offline Performance Analysis - SGA Representation

Off-line Performance
On-line Performance

(a) SGA Representation

 16

 18

 20

 22

 24

 26

 28

 30

 0  10  20  30  40  50

F
itn

es
s

Generations

30-bit One Max - Online/Offline Performance Analysis - 4-Bit MGA Representation

Off-line Performance
On-line Performance

(b) MGA 4-2-1 Representation

 16

 18

 20

 22

 24

 26

 28

 30

 0  10  20  30  40  50

F
itn

es
s

Generations

30-bit One Max - Online/Offline Performance Analysis - 6-Bit MGA Representation

Off-line Performance
On-line Performance

(c) MGA 6-3-1 Representation

 16

 18

 20

 22

 24

 26

 28

 30

 0  10  20  30  40  50

F
itn

es
s

Generations

30-bit One Max - Online/Offline Performance Analysis - 8-Bit MGA Representation

Off-line Performance
On-line Performance

(d) MGA 8-4-1 Representation

Figure 7.1: 30-bit OneMax Static Landscape

This ties in with work presented by Beaudoin et al. [18] which showed that over

less difficult landscapes, the inclusion of neutrality does not assist in searching and
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that neutrality makes easier problems harder. Another finding to report from this

set of experiments is that the closeness of the online and off-line MGA results, which

indicates that there is little exploration taking place (due to the level of problem

difficulty associated with the OneMax problem) illustrating that the MGA’s repre-

sentation reduces the impact of variational operators, as reported by Doerr et al.

[49]. Also the findings presented in Figure 7.1, differ from Yu and Miller [207], as no

positive effect appears to exist from including neutrality over this OneMax landscape.
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Figure 7.2: Diversity 30-Bit OneMax SGA & MGA

Figure 7.2 contrasts the level of diversity in the population between the SGA and

the MGA representations. The SGA phenotypic diversity converges earlier that that

of the MGA and there exists a significant difference between the genotypic diversity

of the MGA representations to that of the SGA. As the unimodal OneMax landscape

was easy to search, the difference in genotypic diversity between both GAs, coupled

with closeness of the MGA’s off-line and online results would suggests that there are a

number of different genotypes sharing the same equivalence neighbourhood and with

a redundant representation, a phenotype’s phenotypic neighbourhood corresponds to
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the phenotypes which are reachable from the given phenotype by a single mutation

of the genotype representing it [35]. One conclusion is that the accessibility of pheno-

types from genotypes is curtailed, due to the level of difficulty and therefore variability

is reduced. To gain a better understanding of the impact of varying the granularity

within the representation, the remaining experiments are designed to increase the

level of problem difficulty.

90-bit OneMax Problem

By using a 90-bit OneMax static unimodal landscape problem the level of diffi-

culty is increased. Figure 7.3, shows that both the SGA and MGA variations had

little difficulty in locating the global optimum. The figures show that given this

static unimodal landscape, although level of difficulty has increased from the pre-

vious experiment, there is little evidence to argue for the introduction of a neutral

representation. However, it appears that over the more difficult OneMax problem,

the level of exploration decreases, illustrated by the closeness of the MGA’s online

and off-line results. In other words, as the level of difficulty increases over the One-

Max landscape, the online and off-line results were closer to one another, than those

recorded over the easier OneMax landscape. A possible reason for this finding, which

was constant as arity increased, is that as reported by Beaudoin et al. [18], harder

problems become easier as neutrality is included and the level of exploration reduces

accordingly. The on-line performance are marginally better than that of the SGA, as

was the case over the previous landscape, illustrating that neutrality provides buffers

to dampen the impact of destructive mutations, as identified by Yu and Miller [207].
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Again as found by Galván-López and Poli [63] the increase in computational overhead

associated with the introduction of neutrality may be out-weighted by the simplic-

ity of the static unimodal landscape. Therefore, for both the unimodal OneMax

static landscape used, the level of difficulty doesn’t necessitate the introduction of

the many-to-one genotype-phenotype landscape associated with the MGA.
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Figure 7.3: 90-bit One Max Static Landscape

Population diversity for the SGA and MGA representations are shown in Figure
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Figure 7.4: Diversity 90-Bit OneMax SGA & MGA

7.4. As with diversity in the 30-bit One Max experiments, there is little difference be-

tween the SGA and the various MGA representations at the phenotypic level, which

is what would be expected, given the low level of problem difficulty associated with

the chosen landscapes. However there is a significant difference at the genotypic level,

with the MGA variations maintaining a higher level of diversity to that of the SGA,

which has converged. This increase in variation combined with the on-line perfor-

mance, suggests that the many-to-one representation allows genotypic equivalence

neighbourhoods emerge.

The results indicate that as the level of problem difficulty increased over the static

unimodal OneMax landscape, the number of neutral networks decreased, illustrated

by the increase in similarity between the online and off-line MGA results. This

ultimately results in a reduction in the accessibility of phenotypes from genotypes.

The difficulty with the examination of the impact of arity on variation over unimodal

landscapes relates to the level of problem difficulty, as results thus far suggest that

there is no advantage in the introduction of neutrality over this class of problem.
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In order to further examine the relationship between variation and granularity, the

following experiments examine the variability of the MGA over a number of more

difficult deceptive changing landscape problems.

10 3-bit Deceptive Changing Environment

Figure 7.5 shows the results of the SGA and the various MGA representations

over the 10 3-bit loosely ordered deceptive changing environment. Both the SGA and

the various MGA representations, reflecting different levels of granularity, found the

global optimum before and after the landscape changed, illustrating that they both

managed to adapt and avoided being drawn towards the deceptive attractor. The

results indicate that all of the MGA representations out performed the SGA over this

landscape, locating the global optimum earlier in the search.

One reason for this is that given the level of difficulty associated with the land-

scape, the addition of neutrality was beneficial, which is similar to findings by Beau-

doin et al.[18]. Although each of the MGA representations chosen out-perform the

SGA, what’s interesting to note is the differences between the MGA representations

with regard to their off-line performance. Results suggest that as arity increases, the

online performance improves, indicating an altering of the balance between explo-

ration and exploitation.

The MGA off-line performance dis-improves as the level of arity increases and the

on-line performance improves. This finding may be explained by biological studies

carried out by Huynen [100] which showed with large amounts of neutrality present

in the mapping, neutral paths exist, which allow for smooth exploration. Indicating
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(b) MGA 4-2-1 Representation
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(c) MGA 6-3-1 Representation
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(d) MGA 8-4-1 Representation

Figure 7.5: 10 3-bit Deceptive Changing Environment

that the balance between exploration and exploitation alters as arity increases. Ex-

periments over a more challenging landscape will examine this further as the balance

is critical particularly over changing landscapes. Another finding to emerge from the

experiment results is that in comparison with the results reported over the same land-

scape in Section 5.4.1, there is a significant improvement in optimising the problem.

The reason for this relates to the introduction of the missense mutation operator
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which increases variability.
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Figure 7.6: SGA & MGA Diversity 10 3-Bit Deceptive Changing Environment

Examining the population diversity presented in Figure 7.6, there is a significant

difference between the SGA and MGA in relation to variation. Although the pheno-

typic diversities are relatively similar, there is a greater level of genotypic diversity

maintained in the MGA representations, indicating a greater number of different

genotypes present in the population. However through the many-to-one representa-

tion, many of these genotypes are sharing equivalence neighbourhoods. Due to the

nature of the more difficult, multimodal deceptive landscape, in comparison with the

unimodal OneMax problems, the MGA on-line performance suggests the level of diffi-

culty leads to an increase in the number of genotypic neighbourhoods being inhabited

during the search. Indicating that as the level of problem difficulty increases so too

do the number of neutral networks present. The results also appear to suggest that as

the arity increases the number of neutral networks decrease, illustrated by the off-line

performance and the level of variation.

It appears with this landscape that as arity increases the level of exploration
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decreases and the global optimum takes longer to locate. The results also indicate

that the level of genotypic diversity maintained by the 8-4-1 MGA representation was

less than the MGA variations, due to the increased level of neutrality present in the

representation, which as described by Huynen [100], leads to smooth exploration, this

may account for it’s slower performance in locating the global optimum in comparison

to the other MGA representations. Another explanation may lie in the increased

neutrality associated with an increase in arity, which as reported by Wagner [191]

lessens the impact of variation operators, who suggested that neutrality assisted in

sheltering a system form the impact of mutation and argued that new adaptations,

provided by neutrality, can assist the search. The results outlined in Figures 7.5b,

7.5c and 7.5d indicate that the dampening of the impact of mutation increases as the

level of arity increases.

30 3-bit Deceptive Changing Environment

The 30 3-bit loosely ordered fully deceptive changing landscape problem operates

on the same principal and increases the level of problem difficulty over the previous

10 3-bit fully deceptive changing landscape. Figure 7.7 compares the performances

of the various representations, illustrating that over the more difficult fully deceptive

landscape the SGA attempts to locate the global optimum of 900, but fails within

the given number of generations, both before and after the landscape changes (see

Figure 7.7a). The Figure illustrates the on-line and off-line performance of the SGA

and shows that the global optimum is never located before the landscape alters at

generation 3000 and once the fitness function has altered, the SGA fails to adapt and
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locate the new global optimum.
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(b) MGA 4-2-1 Representation
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(c) MGA 6-3-1 Representation
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Figure 7.7: 30 3-bit Deceptive Changing Environment

In contrast to the SGA results, Figure 7.7 shows an improved performance for

each of the MGA representations used. The Figures indicate that the 6-3-1 (Figure

7.7c) and 8-4-1 (Figure 7.7d) representations were successful, both before and after

the landscape changed. However, the 4-2-1 MGA representation (Figure 7.7b) failed

to recover sufficiently, within the required number of generations, after the changed



Chapter 7: Examining the Arity of a Multi-layered GA 156

environment, indicating that the adaptive quality of the MGA may lessen over more

difficult changing landscapes as the level of granularity in the representation decreases.

The results presented in Figure 7.7 show that there is a significant advantage in

including neutrality over this class of problem. The results correspond with findings

by Ebner et al. [51, 52], who found that high levels of mutation could be sustained

by having neutral networks present. They also identified that neutral networks assist

in maintaining diversity in the population, which may be advantageous in a changing

environment. Also Elgin argued that the random drift caused by neutral variants

increases population diversity by expanding the population distribution so as to help

find an escape route from local traps [54]. These factors can help in explaining the

success of the MGA representations, however the inclusion of a missense mutation

operator may also be a factor as it is designed to induce phenotypic variability.

In relation to the off-line performances presented in Figure 7.7, the results would

indicate that the SGA representation cannot provide an adequate amount of explo-

ration to succeed over the 30 3-bit loosely ordered deceptive landscape. The MGA

representation, in contrast offers the ability, through neutrality, to adjust the bal-

ance between exploration and exploitation in order to succeed. However Figure 7.7b

shows that the 4-2-1 MGA representation doesn’t provide enough exploration to lo-

cate the global optimum after the landscape change, within the required number of

generations. The other MGA representations (Figure 7.7c and Figure 7.7d) offer an

adequate balance between exploration and exploitation to succeed. Again this can be

explained through Huynen [100] work, which showed that large amounts of neutrality

present in the mapping, provides neutral paths for smooth exploration.
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Figure 7.8: SGA & MGA Diversity 30 3-Bit Deceptive Changing Environment

Associated with each of the results conducted over the 30 3-bit fully deceptive

changing landscape problem, is the amount of diversity within the various popula-

tions. As mentioned previously, as the level of granularity changes, due to changes in

the size of the translation tables, so too does the level of variation and the accessi-

bility of phenotypes from genotypes. As with previous results the level of phenotypic

diversity maintained by the various GAs remains quite similar (see Figure 7.8). How-

ever, the level of genotypic diversity maintained by the MGA representations is again

greater that that of the SGA. Over this deceptive changing landscape, the levels of

phenotypic diversity maintained by the MGA representations are quite similar to one

another. This similarity combined with the online results presented in Figure 7.7,

suggests that the number of neutral networks present varies and as arity increases

the number of neutral networks increase accordingly, to allow a sufficient amount of

exploration.

As Nimwegen et al. [143] illustrated, the evolution of the population through

neutral networks, suggesting that migrating individuals remain highly connected, that
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is with neutral neighbours sharing the same level of fitness. This results in phenotypes

which are quite resilient against mutation. When taking neutral theory into account,

then the accumulation of neutral mutations should lead to new paths being located

[35, 37]. With regard to the SGA, both the genotypic and phenotypic diversity are

the same and without an adequate amount of exploration, the population has become

trapped on a local optimum.

No Transcription Experiments

To develop an understanding of the impact of the transcription phase on the MGA,

experiments were run over the 10 3-bit deceptive changing landscape using a 6-bit

MGA representation without transcription, with Figure 7.9 presenting the results.

Looking at Figure 7.9a, the results show that although the search locates the global

optimum, the performance was similar to the results achieved using transcription.

One possible reason is that although there wasn’t a changing of characters as would

have implemented at the transcription phase, the characters were created directly

from the binary string and then passed onto the translation phase without being

altered. What the results indicate is that the transcription phase has had very little

influence over this particular landscape and that the main forces at work relates to

the translation phase and more specifically to the size of the translation table, which

sets the level of granularity.

However, over a more difficult landscape, an experiment using a 6-bit MGA rep-

resentation was run without the transcription phase over the 30 3-bit loosely ordered

deceptive changing landscape, illustrated in Figure 7.9b. The results indicate that
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Figure 7.9: No Transcription Changing Environment

the 6-3-1 MGA representation fails to locate the global optimum. This result differs

from out previous experiment, shown in Figure 7.9a, suggesting over the more diffi-

cult landscape, the transcription phase assists in the search strategy. One reason for

this is that the transcription phase provides a subtle form of variation which may be

viewed as being quite similar to inversion, which in turn appears to assist the search

strategy over the more difficult deceptive changing landscape.

No Missense Mutation

Figure 7.10 shows the results of not including the Missense mutation operator.

Even on the relatively easy 10 3-bit landscape, illustrated in Figure 7.10a, the 6-bit

MGA representation fails in its search for the global optimum, indicating that the

missense mutation strategy assists in tracking the optimum over a changing landscape

and without it the search struggles to escape from a deceptive attractor. These

results can also be compared with Section 5.4.1, the difference being the number of
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generations over which the problem ran, where missense mutation was included the

problem was optimised using fewer function evaluations.
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Figure 7.10: 6-3-1 MGA Changing Environment - No Missense Mutation

Figure 7.10b shows that without Missense mutation the 6-3-1 MGA representation

fails to escape the deceptive attractor throughout the search. In a similar way to the

results shown in Figure 7.10a, there appears to be too little variation and variability,

probably due to quite low mutation rates, in the population. Overall, it appears the

inclusion of missense mutations in the GA increases the level of variability, thereby

allowing the optimisation to take place earlier in the search.

To examine whether the results found by using the multi-layered MGA can be

replicated by increasing the level of mutation in the SGA, we ran another set of

experiments (see Figure 7.11) where the level of mutation in the SGA was increased

to 2/l, as a method of increasing diversity [32]. The results shown in Figure 7.11a

illustrate that in comparison to Figure 7.5a, the extra mutation has improved the

performance of the SGA. However, it is worth noting that the off-line performance is
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Figure 7.11: SGA - Increased Mutation Changing Environment

far lower, a result of the randomness associated with the level of mutation introduced

and may prove problematic over a more challenging environment. However, over the

more difficult landscape, the SGA fails to locate the global optimum, shown in Figure

7.11b. This appears to indicate that, over the given landscape, even with a higher

level of diversity associated with higher mutation, the search strategy of the SGA

fails over the given landscape, probably due the randomness associated with high

mutation rates.

Statistical Significance

A two-sided paired Wilcoxon signed rank test was carried out on the results of

each experiment and were shown to be highly significant (p < 0.001) with a p-value

< 2.2e−16 recorded for each of the experiments illustrated in the chapter.
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7.5 Chapter Summary

The aim of this chapter was to examine the arity of the MGA, which alters the

size of the translation tables and impacts on the accessibility of phenotypes from

genotypes. The chapter also looked at the impact of Transcription and Missense

Mutation. The experiments carried out in Test 5 were run over a number of static

unimodal landscapes and a number of dynamic multimodal problems. The experi-

ments were designed to test the following hypotheses:

• (H7) Altering the level of granularity, alters the size of the translation table and

impacts on the search over more difficult dynamic landscapes.

• (H8) The benefit of including a Transcription phase in a many-to-one, genotype-

phenotype mapping, increases as the level of problem difficulty increases over

more difficult dynamic landscapes.

• (H9) An interpretation of Missense mutation, included within the layering of

a biologically inspired, multi-layered genotype-phenotype mapping GA, assists

searching more difficult dynamic landscapes.

Looking at the experiments, designed to test H7, conducted over a number of uni-

modal and multimodal landscapes. The results indicated that there was little benefit

in including neutrality on unimodal landscapes and that easier unimodal problems

appeared more difficult and more difficult unimodal problems became easier, this

trend continued as arity increased. These results are consistent with those found by

Beaudoin et al. [18]. The results also illustrated that there little exploration was

required due to the level of problem problem and that the MGA’s representation
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reduces the impact of variational operators, as reported by Doerr et al. [49]. Also as

found by Galván-López and Poli [63] the increase in computational overhead associ-

ated with the introduction of neutrality out-weights the introduction of neutrality on

static unimodal landscape. The results also indicated that as the level of problem dif-

ficulty increased over the static unimodal landscape, the number of neutral networks

decreased, which ultimately results in a reduction in variability.

Over the more challenging dynamic multimodal problems, the MGA performed

better than the SGA and the performance improved as the level of problem difficulty

increased. It appears that given the level of difficulty associated with the landscape,

the addition of neutrality was beneficial, which is similar to findings by Beaudoin et

al. [18]. The results over the multimodal deceptive landscape indicated that as arity

increased, the degree of exploration required decreased over the less difficult problem

and increased over the more difficult problem, as arity and the number of neutral

networks increased. This finding may be explained by biological studies carried out by

Huynen [100] which showed with large amounts of neutrality present in the mapping,

neutral paths exist, which allow for smooth exploration. Looking at the results of the

static unimodal OneMax problem, it appears that as the level of difficulty increases,

the off-line performances improve, possibly indicating an increase in the dampening

of the effect of variation operators as problem difficulty increases and also as arity

increases. This when taken into consideration with the diversity results, also implies

that through the many-to-one representation, a number of genotypes are representing

the global optimum.

To summarise the H7 experiments, due to the nature of the more difficult, mul-
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timodal deceptive changing landscape, the MGA on-line performance and variation

suggests that an increase in the level of difficulty leads to an increase in the number

of genotypic neighbourhoods being inhabited during the search, impacting on the

evolutionary trajectory. Put another way, with the MGA’s neutral representation

over more difficult dynamic landscapes, as arity increases, it impacts on the number

of neutral networks present, offering paths to escape deceptive attractors, impacting

on the search. The findings suggest that over more deceptive dynamic landscapes as

difficulty increases, so too do the number of neutral networks and the level of arity

impacts on this, thereby impacting on evolutionary trajectory and the search. The

reverse is also true, over less difficult dynamic problems as arity increases, altering the

granularity, the number of neutral networks decrease, also impacting on the search.

Overall the results indicated that the stated hypothesis H7 is supported.

In relation to the experiments conducted to examine H8, the results reported

show that in relation to the use of transcription, the advantage of this phase is not

apparent over less difficult landscapes as the exclusion of transcription had little or

no impact. Once the level of difficulty increased however, as with the more difficult

changing deceptive problem, transcription proved vital as without it, the search failed

before and after the landscape changed. One possible reason for this is that the

transcription phase performs a form of variation, quite similar to inversion and is

beneficial as the level of problem difficulty increases. Therefore the hypothesis H8

can be accepted. Finally, hypothesis H9 examined the inclusion of an interpretation

of missense mutation. Experiments were conducted both with and without missense

mutation and results showed that it assisted in the search strategy over both difficult
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and less difficult dynamic landscapes, indicating that the use of missense mutation,

which operates at levels within the genotype-phenotype map can be beneficial as it

induces phenotypic variability. Because of this the hypothesis H9 was supported.

In order to obtain information on phenotypic variability, an examination of the

evolutionary path from the genotypic space to the phenotypic space is conducted.

These respective spaces (genotypic and phenotypic) can be viewed as topological

spaces which in turn are broken into sets of neighbourhoods. In the genotype topo-

logical space, particular genotypes are grouped into neighbourhoods based upon close-

ness to particular phenotypes. This closeness is not based on similarity but on the

accessibility of the phenotype to the genotype topological space and ignores any as-

sociated fitness values. The closeness can be determined by the number of mutations

away a particular genotype is from a phenotype [59].

Developing an understanding of the impact on the evolutionary path, caused by

the multi-layered genotype-phenotype mapping is crucial in investigating the impact

of the proposed neutral representation on search. Chapter 8 examines the evolu-

tionary trajectory of both a SGA and a MGA, with both GAs populations visually

broken into sets of neighbourhoods based on closeness to phenotypes. The chapter

also examines the impact of neutrality on the accessibility of phenotypes from geno-

types. The chapter also looks at variation and compares the MGA to a number of

SGAs incorporating a number of traditional diversifying techniques. The motivation

is to examine how the introduction of Neutral theory into a GA representation affects

the evolutionary trajectory of a population and to examine the impact on phenotypic

variability and of silent mutations on gene flow.



Chapter 8

Examining the Population

Trajectory & Heterogeneity of a

Multi-layered GA

8.1 Introduction

We can view evolution as operating on the genotype space and when exploring

the search space, evolution, through recombination and mutation, defines the search

space’s variational topology. When discussing variational topology we need to exam-

ine both genotypic variational topology and phenotypic variational topology. Nature

uses a complex genotype-phenotype map to advance a relatively simple genotype

space variational topology to an extremely complex phenotypic variational topology.

Toussaint [183] argues that the phenotype space is what should in fact be viewed as

the search space for evolution rather than the genotype space. With this in mind,

166
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the genotype-phenotype map is the key to understanding phenotypic variability and

it also allows us to gain an insight into how evolution can adapt the search on the

phenotype space.

Having established the efficacy of the MGA with Tests 1 and 2, an examination

of variation and inducing variability followed using Tests 3 and 4. Results obtianed

indicated that variation was implicitly maintained, offering the possibility to induce

variability which proved beneficial as problem difficulty increased. Test 5 looked at

the arity of the MGA and found that altering the granularity of the representation

changes the access of phenotypes from genotypes, thereby impacting on the search

and suggesting that both problem difficulty and arity, impact on the availability of

neutral networks. Test 5 experiments introduced the missense mutation operator,

with results illustrating its benefits on the search strategy.

Overall, findings thus far have shown that the proposed representation maintains

variation and increases variability. The remaining questions relate to understanding

the MGA representations impact on evolutionary trajectory and how it influences

variation, accessibility and variability. As population based EAs are often difficult to

analyse [48], in order to develop an understanding of how the MGA representation

impacts on search, the chapter outlines visually, analyses of genotypic and pheno-

typic variation and variability by examining the evolutionary trajectory. The chapter

then examines heterogeneity, looking at neutral networks and comparing the MGA

representation to traditional diversification mechanisms.

This chapter examines the population trajectory and heterogeneity for both the

SGA and the MGA. The experiments are separated under two headings, Test 6 and
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Test 7. The experiments in Test 6 visually examine the evolutionary trajectory of

both the SGA and the MGA through the use of fitness clouds as outlined by Vérel

[189]. Test 7 examines Neutral networks, also known as fitness plateaus, which can be

viewed as a set of neighbouring solutions with the same fitness value, in other words

points in the search space that are connected by neutral point mutations, where

the fitness is the same for all points. Test 7 also compares the MGA’s ability to

maintain heterogeneity and avoid premature convergence with that of the SGA using

traditional approaches to dealing with the loss of solutions and sub-solutions.

The chapter contains extracts from [92, 93] and is organised as follows: Section 8.2

gives an overview of the problem landscape chosen for the experiments and describes

the fitness plateaus and changing landscape. Section 8.3 gives an overview of the

experiments conducted. Section 8.4 examines the evolutionary trajectory of both

populations to gain a better understanding of the impact of neutrality on population

dynamics over the course of an evolutionary time period. Section 8.5 investigates the

impact on heterogeneity caused by the implicit maintenance of diversity due to the

layering of the genotype-phenotype mapping of the MGA and Section 8.6 concludes

the chapter.

8.2 4-bit Fully Deceptive Landscape

Experiments contained in this chapter were carried out over a 4-bit fully deceptive

landscape, as outlined in [198]. The landscape is then altered at a predefined point

in the search to produce a changing environment as outlined in Section 2.6.2. This

landscape was chosen as is should provide a similar level of difficulty for both the SGA
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and the MGA. Figure 8.1 graphically illustrates the 4-bit deceptive problem [198] and

a reversed 4-bit deceptive problem. Figure 8.1a, shows the 4-bit problem landscape

and Figure 8.1b, the associated heat map, which is designed to illustrate visually

the neutral networks (fitness plateaus) contained in the landscape. The landscape

change, which occurs at generation 50, is illustrated in Figure 8.1c, which shows the

reversed landscape and Figure 8.1d its associated neutral networks and their fitness

values.
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Figure 8.1: 4-bit Deceptive Landscapes & Associated Heat Maps

The results begin by comparing both GAs in a conventional manner based on
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performance. Figure 8.2, illustrates the off-line (averaged best fitness) and on-line

(averaged fitness) performance for both the SGA and the MGA. The results indicate

that the changing 4-bit deceptive landscape initially proved easy for both the SGA and

the MGA. However, after the landscape changes at generation 50, the SGA becomes

trapped on the local optimum and fails to escape, while the MGA escapes the local

optimum and locates the global optimum.
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Figure 8.2: SGA & MGA On-line/Off-line Performance Statistics

A Wilcoxon Rank sum test indicates that the results shown in Figure 8.2, that

is both the off-line and on-line comparison between the SGA and MGA, were sta-

tistically significant. The results indicated that the off-line results for both GAs

were highly statistically significant (p < 0.001) with a p-value < 2.2e−16, similarly

the on-line results were also highly statistically significant (p-value < 2.2e−16). This

difference indicates different dynamics at play in both populations. The remaining

analysis of Test 6 examines visually, the evolution of both populations, in an attempt

to gain a better understanding of the impact on neutrality on population dynamics

over the course of an evolutionary time period and to illustrate the performance of
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both population in a dynamic environment. The analysis in Test 7 examines Hetero-

geneity and compares the MGA to various SGA implementations adopting a number

of diversification mechanisms.

8.3 Experiments Overview

8.3.1 Population Trajectory Experiments Overview

The genotype-phenotype map is critical in the operation of phenotypic variability

and is essential in allowing an insight into how evolution can adapt the search on the

phenotype space. To understand the genotype-phenotype mapping, an examination

of population trajectory is required. Test 6 is designed to examine the evolutionary

trajectory of both the SGA and the MGA. The populations are presented graphi-

cally in order to visualise the impact of layering the representation and introducing

neutrality. Test 6 is designed to test the following hypothesis: H10 A modular, fixed

non-trivial genotype-phenotype mapping, which introduces neutrality into the primary

structure of a GA, alters the evolutionary trajectory and is beneficial over a fully

deceptive changing landscape.

8.3.2 Heterogeneity Experiments Overview

Test 7 describes visually the various neutral networks present in the MGA pop-

ulation and illustrates the genotypic equivalence classes, showing that the neigh-

bourhoods and their inhabitants are closely related to the phenotypes they represent,

illustrating synonymity, thereby allowing operators to function correctly and ensuring
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that the building block hypothesis applies. Test 7 examined the impact of neutral-

ity on population heterogeneity by comparing the MGA to a series of SGA’s each

incorporating a different diversification mechanism to prevent the premature loss of

good solutions and sub-solutions. The approaches used by the SGA included various

selection mechanisms; selection noise approaches; selection pressure techniques and

operator disruption. Test 7 examines the following hypothesis: H6 A modular, fixed

non-trivial genotype-phenotype mapping, which introduces neutrality into the primary

structure of a GA, maintains heterogeneity and is beneficial in promoting exploration

over a fully deceptive changing landscape.

8.4 Test 6 - Evolutionary Trajectory

Parameters

The parameters chosen were as follows: Populations size 20; number of generations

200; number of runs 10; Crossover 0.7; Mutation 1/l where l is the length of the

chromosome and Missense mutation 0.02. The analysis that follows is broken into

three different views of the population trajectory:

• Neutrality & Population Evolution.

• Neutrality & Variation.

• Neutrality & Variability.
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8.4.1 Neutrality & Population Evolution

Analysis Before the Landscape Change

In relation to the evolution of the SGA and MGA populations, Figure 8.3 gives

an overview of the initial population distribution at generation 0.
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Figure 8.3: SGA & MGA Generation 0

Figure 8.3a and the associated neutral networks Figure 8.3b, illustrate that the

initial SGA population of 20 individuals is randomly spread over the landscape. Fig-

ure 8.3c shows the MGA population distribution over the problem landscape at gener-

ation 0 and its neutral networks in Figure 8.3d. Each of the coloured shapes represent
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an individual in the population, with identical genotypes, represented by the same

colour and shape, residing in an equivalence neighbourhood. Different genotypes rep-

resenting the same phenotype reside on the same plateau, but are illustrated using

different shapes or colours. Figure 8.3a and Figure 8.3c illustrate that the initial

population distributions for both algorithms are quite similar and is emphasised in

Figure 8.3b and Figure 8.3d, with different individuals represented by different colours

and shapes, identifying different genotypes sharing similar fitness plateaus or neigh-

bourhoods. One of the main differences between both GAs is that with the SGA,

there is a one to one (1 : 1) representation between the genotype and the phenotype.

The MGA incorporates a many-to-one (M : 1) representation, which manifests itself

in a number of different genotypes representing the same phenotype.

Examining the populations for both GAs at generation 50 (Figure 8.4), which is

the last generation before the landscape changes, the SGA’s population has converged,

apart from the impact of mutation (Figure 8.4a and Figure 8.4b). A large portion

of the MGA’s population has also located the global optimum, however, due to the

genotype-phenotype mapping, genetic drift slows and the population doesn’t converge

[10, 54]. Figure 8.4c and Figure 8.4d, show the many-to-one representation present

in the MGA population.

The MGA population’s evolutionary trajectory differs considerably by increasing

variation and avoiding converging on the global optimum. Therefore the population

consists of a number of individuals located on different neutral networks, which is a

result of gene flow due to the presence of neutrality. Work by Cohoon et al. [33],

drew on the idea of punctuated equilibria and concluded that by having equivalent
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Figure 8.4: SGA & MGA Generation 50

classes a many-to-one representation exists, which proved beneficial to the search.

It’s interesting to note the location of the populated neutral networks in relation to

variability, which as a result of connectivity associated with the MGA representation

are, in the main, located in neighbouring plateaus.

Analysis After the Landscape Change

Figure 8.5, illustrates the SGA and MGA population distribution when the land-

scape changes at generation 51. Figure 8.5a and Figure 8.5b shows the SGA pop-
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ulation, which now converges on the local optimum as the landscape has reversed

in relation to the fitness function. It also indicates that all but one member of the

population, as a result of convergence, are located on the local optimum (formally

the global optima).
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Figure 8.5: SGA & MGA Generation 51

The MGA population has a wider distribution on the problem landscape (see Fig-

ure 8.5c), with the bulk of the population located on the local optimum. Figure 8.5d

indicates that due to the presence of neutrality in the representation, the popula-

tion is dispersed over a wider number of fitness plateaus. As found by Elgin [54]
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random drift caused by neutral variants increases population diversity by expanding

the population distribution, this in turn assists in finding an escape route from local

traps.

Looking at the population evolution through to generation 200 for both GAs, as

seen in Figure 8.6, the SGA population remains trapped on the local optimum (see

Figure 8.6a and Figure 8.6b), while the MGA population has escaped and is now

clustered around the global optimum and neighbouring plateaus (see Figure 8.6c and

Figure 8.6d).
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Figure 8.6: SGA & MGA Generation 200
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This appears to indicate that the MGA, through the genotype-phenotype map-

ping, implicitly maintains a level of genetic diversity within the population and is

resistant to convergence on a single neutral network as a result of increased variation

and variability, thereby offering the ability to induce variability and adapt in a chang-

ing environment. These results agree with Shipman [167], who found neutrality to

be advantageous where neutral networks are distributed over the search space with a

high degree of connectivity between them. Also, as the representation was designed

to be uniform and synonymous [154], the results found illustrate that the locality of

reference and the connectivity are both high. These findings suggest a similarity to

work by Correia [35], who argues that there are synonymously redundant represen-

tations that allow connectivity to be increased between phenotypes, when compared

to non-redundant representations. The findings are also in line with Nimwegen et

al. [143] who illustrated the evolution of the population through neutral networks,

suggesting that migrating individuals remain highly connected, that is with neutral

neighbours sharing the same level of fitness. This results in phenotypes which are

quite resilient against mutation. The next set of figures, illustrate graphically the

variation topology.

8.4.2 Neutrality & Variation

The Figures presented under Neutrality and Variation are designed to graph the

Hamming difference between individuals in the population in relation to all other

population members in order to visually examine the variation for each generation.

As a traditional SGA maps directly from the genotype to the phenotype, both the
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genotypic search space and the phenotypic search space are identical. With the

MGA mapping, neutrality increases the genotypic search space in comparison to the

phenotypic search space.

Using normalised Hamming distances between individuals, Figure 8.7 illustrates

the population variation. Figure 8.7a shows the genotype/phenotype diversity for

the SGA, while Figure 8.7b, illustrates the genotypic diversity for the MGA and

Figure 8.7c, the phenotypic diversity at generation 0. Figure 8.7 shows the overall level

of diversity, with the generation under observation highlighted in yellow (Figure 8.7d).
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Figure 8.7: SGA & MGA Diversity - Generation 0
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From the figures, it appears that at generation 0, there is quite a large level of

diversity present in both populations. This can be explained as evolution has not

yet begun and the populations have been randomly generated. Also, as neutrality is

introduced the MGA’s genotypic search space increases, while the MGA’s phenotypic

space (Figure 8.7c) is quite similar to that of the SGA.
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Figure 8.8: SGA & MGA Diversity - Generation 50

As the populations evolve to generation 50, convergence has occurred in the SGA

(apart from the influence of mutation) and the population is shown in Figure 8.8a,

with the relatively smooth plot, illustrating the lack of variation present in the popu-
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lation. In comparison the MGA population preserves variation and genetic diversity

is maintained within the genotypic search space. This is shown in Figure 8.8b, which

illustrates a more rugged plot compared to that of the SGA, indicating a higher

level of variation associated with the neutral mapping. The MGA phenotypic search

space (Figure 8.8c) presents the diversity at a phenotypic level, again the plot shows

a more rugged landscape illustrating the phenotypic variation and the avoidance of

convergence. Figure 8.8d shows the overall level of variation during a run, with the

generation under observation being highlighted in yellow.
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Figure 8.9: SGA & MGA Diversity - Generation 200
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In Figure 8.9 we see the variation at generation 200 (Figure 8.9d), the SGA popu-

lation remains trapped on the local optimum and contains little diversity to find paths

to allow it to escape. This situation is shown in Figure 8.9a, reflecting the lack of

variation within the population when viewed as a function of Hamming distance. The

MGA genotypic variation and phenotypic variation at generation 200 are shown in

Figures 8.9b and 8.9c respectively. The level of phenotypic diversity present, relates

to the many-to-one genotype-phenotype mapping and to individuals of the popula-

tion being part of other neutral networks, meaning the population has not converged.

The results on neutrality and variation presented illustrate graphically the impact

of the MGA representation on genotype and phenotype variation during an evolu-

tionary run. The results are similar to those reported by Yu and Miller [205, 206]

and Ebner et al. [51, 52], in relation to neutrality and the maintenance of diversity.

Having examined the impact of neutrality on variation we now examine the impact

of neutrality on phenotypic variability.

8.4.3 Neutrality & Variability

The final examination of the effects of neutrality on the evolutionary trajectory of

the MGA population relates to the impact of the neutrality on variability. In relation

to describing a genotypic neighbourhood, by using single point mutation with a one-

to-one genotype-phenotype map, then the number of reachable genotypes from a given

genotype is (A−1)L, where A is the number of alleles available and L is the length of

the genotype [109]. In order to examine the effect of single bit mutation, this process

is repeated for both the SGA and MGA with an individual being randomly selected
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from both the SGA and MGA populations from each generation. All of the bits are

then flipped one bit at a time in sequence and the impact on fitness is noted. The aim

of this approach is to examine how the presence of neutrality impacts on the mutation

operator and variability, as a genotype in the MGA population, when mutated can

produce either a silent or an adaptive mutation.
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Figure 8.10: Single-bit Mutation SGA Genotype/Phenotype 1111

Figure 8.10, illustrates the impact of mutation on each allele of the genotype

1111. The initial genotype is shown in black with each of the genotypes created by

a single bit mutation shown in red, depicted in Figure 8.10a. As the SGA has a

one-to-one genotype-phenotype mapping the result of each single bit mutation causes

the creation of a different genotype which represents a different phenotype, located

on a different fitness plateau, see Figure 8.10b.

Mutation impacts the MGA population in a different as there exists a many-to-one

mapping between the genotype and the phenotype which increases variation and vari-

ability. Looking at Figure 8.11, which represents the outcome of a single bit mutation

for each bit of the genotype represented in black and the mutated genotypes in red
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Figure 8.11: Mutation MGA Genotype 000010111110101010110000 Phenotype 1111

(Figure 8.11a), we can see that of the 24 mutations, one for each bit in the genotype,

there were 5 adaptive mutations, illustrating the increase in connectivity. By chang-

ing the primary structure, the MGA possesses the ability to increase both variation

and variability. The silent mutations are located in the same neutral network and are

shown in Figure 8.11b. This is as a direct result of the presence of neutrality in the

genotype-phenotype map, due to the inclusion of an implementation of transcription,

translation and dynamic activation. The findings show the influence of a non-trivial

neutral representation, where different genotypes in a neutral set allow for different

phenotypic distributions [176, 183].

Missense Mutation

The MGA representation includes missense mutation which operates within the

layers of the genotype-phenotype mapping. The missense operator mutates single

characters and can be silent or adaptive (see Figure 8.12). Figure 8.12a and Fig-

ure 8.12b illustrates the phenotypic distribution for individual when an adaptive
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missense mutation takes place following an adaptive single bit mutation, illustrating

that the combiniation of single-bit and missense mutation increases variability. This

section highlighted the effect of both mutation and missense mutation, with results il-

lustrating that the SGA can only access neighbouring local plateaus, while the MGA,

where mutation can be phenotypically silent or adaptive, provides greater variability

[183].
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Figure 8.12: MGA 1-Point & Missense Mutated Individual

The Test 6 findings show visually an interpretation of Toussaint’s [184] idea of

non-trivial neutrality, where different genotypes in a neutral set allow for different

phenotypic distributions and how evolution can adapt the search on the phenotype

space [183]. Although two genotypes can be considered equivalent if they represent

the same phenotype, however their variational topologies can differ [176]. But ulti-

mately the genotype-phenotype map “induces a variational topology on the phenotype

space depending on the topology of the genotype space” [183]. The results of Test 6

illustrate graphically the variation and variability associated with the MGA. The find-
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ings here suggest that through the neutral representation and dynamic activation, the

representation which is, designed to be uniform and synonymous, allows connectivity

to increase, as found by Correia [35] and shines some light on the interrelationship

between neutrality and connectivity. A further question relates to the heterogeneity

and as this dissertation suggests that the representation presented maintains varia-

tion, thereby preventing the loss of good solutions, and increases variability through

increased connectivity, then how does this compare with traditional diversification

methods designed to prevent the loss of valuable genetic material. This is the subject

of Test 7 which examines heterogeneity.

8.5 Test 7 - Heterogeneity

Test 7 examines the heterogeneity resulting from the implicit maintenance of di-

versity within a population through the inclusion of a layered genotype-phenotype

map based on the principals of Neutral theory [111], comparing it with traditional

techniques adopted by the SGA to prevent the loss of good solutions or sub-solutions.

Test 7 is designed to test the following hypothesis H6: A modular, fixed non-trivial

genotype-phenotype mapping, which introduces neutrality into the primary structure

of a GA, maintains heterogeneity and is beneficial in promoting exploration over a

fully deceptive changing landscape.

In simple GAs (SGA) the selection mechanisms allow the propagation of fitter

solutions at the expense of less fit solutions. This in turn leads to the convergence of

the population. Convergence will also occur even where you have alternative solutions

with identical fitness. Solutions and sub-solutions are normally lost in a SGA pop-
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ulation for three reasons: selection pressure, selection noise and operator disruption.

Selection pressure occurs as the result of the selection process, with less fit solutions

disappearing from the population. Selection noise is the result of the variance of the

selection process due to random choices between identically fit solutions. Operator

disruption takes place through the implementation of the crossover and mutation op-

erators which possess the ability to destroy good solutions. In an attempt to avoid

premature convergence, techniques for diversifying a population generally attempt to

reduce individually or in combination with one another, selection pressure, selection

noise or operator disruption [126].

Variation within a population can serve a number of purposes, such as delaying

convergence in order to promote exploration, and the location of multiple solutions.

Because of this the maintenance of diversity within a population is a desirable feature

for GAs. Diversification methods capable of reducing all three criteria, selection noise,

selection pressure and operator disruption exist. The problem lies in the fact that

reducing all three criteria to arbitrarily low levels results in the GA carrying out little

or no useful search [126]. The maintenance of diversity for its own sake is undesirable,

what is required is diversity that promotes good strings [74]. Past research into

diversity and methods to maintain diversity within the population include De Jong

[43, 135], Whitley [196], Eshelman [55], Goldberg [71], Grefenstette [79, 32], Mahfoud

[126, 125], Bickle [21], Morrison [134], McPhee [129], BarkerbarkerDiversity00, Hutter

[99], Motoki [137] and Doerr [48] to name but a few.

By comparing the performance of the MGA with a SGA containing a number of

diversifying techniques, we can evaluate the diversity maintenance mechanism implicit
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in the MGA representation. With regard to the three mechanisms for promoting

diversity, theory would suggest that Stochastic Universal Selection (SUS) offers the

ability to minimise selection noise, fitness scaling can decrease selection pressure and

lower rates of crossover and mutation can reduce operator disruption [126]. However

it is worth remembering that a relationship exists between convergence and diversity

in a GA population. If there is no operator disruption and no selection pressure, then

the GA will maintain its initial population and won’t perform any meaningful search.

Also, with regard the mutation operator, as mutation rates increase, the diversity

produces is usually not useful as the GA is approaching random search.

8.5.1 Test 7 Experiments

Parameters

The experiments were conducted over the 4-bit fully deceptive changing landscape

as outlined above and the parameters chosen were as follows: Populations size 20;

number of generations 200; number of runs 10; Crossover 0.7; Mutation 1/l where

l is the length of the chromosome; Missense mutation 0.02. For the heterogeneity

experiments various selection mechanisms were used in conjunction with the SGA and

tournament selection was used for the MGA, with a tournament size of 4. Various

scaling mechanisms were used with the SGA and no scaling mechanisms were included

in the MGA. Over the set of experiments designed to examine various diversifying

techniques, the selection mechanisms and scaling methods of the SGA were altered. A

number of experiments were also conducted where the SGA’s variation operators were

increased. The motivation for these changes is to vary the selection noise, selection
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pressure and operator disruption for the SGA, thereby examining the impact of the

inclusion of well understood diversifying techniques into the SGA, which in turn are

then compared with the performance of the MGA.

The experiments conducted for Test 7 can be split into three categories:

• The selection noise experiments explore the use of Stochastic Remainder Selec-

tion and Stochastic Universal Selection.

• The selection pressure experiments examine, Linear, Window, Sigma Truncation

and Boltzmann scaling techniques and niching techniques, such as, Crowding

and Incest Reduction.

• The operator disruption experiments look at the impact of increasing rates of

crossover and mutation.

8.5.2 Neutral Networks & Neighbourhood Equivalence

The neutral networks representing various fitness values are shown in Figure 8.13.

Neutral networks can be viewed as genotypic neighbourhoods where genotypes repre-

senting the same phenotypes group together on the same fitness plateaus. Before the

landscape changes at generation 50, the most prominent neutral network represents

the global optimum phenotype (1111). As evolution progresses, the MGA, through

its M : 1 representation, allows the size of neutral networks to adapt as the popu-

lation evolves. The next largest neutral networks represent the phenotypes (0111),

(1110), (1101) and (1011), which are the four genotypes closest in Hamming distance

to the optimum, indicating that the MGA’s population evolves towards neighbouring
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neutral sets.
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Figure 8.13: Neutral Networks

As the landscape changes the largest neutral network represents the new local

optimum (1111), as this was the global optimum at the time of the change, As the

search continues the MGA’s population escapes the local optimum and has located

the global optimum. At this point, the most prominent neutral network represents

the phenotype (0000) (the new global optimum). Furthermore, the MGA population

has evolved towards a different group of neutral sets representing the phenotypes

(0001), (0010), (0100) and (1000), all close, phenotypically, in Hamming distance to

the global optimum. Examining the evolutionary trajectory from the phenotype space

illustrates that the MGA’s representation maintains good solutions and sub-solutions

within the population allowing the processing of good schemata. As the Building

Block hypothesis argues, the power of a GA lies in being able to find good building

blocks [67]. Viewing the search space as argued by Toussaint [183] allows an insight

to be developed into how evolution can adapt to the search.

Figure 8.14 looks at the make-up of the neutral sets, examining the number of
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Figure 8.14: Neutral Networks - Identical Genotype

identical genotypes in each set. The figure indicates that there is a high degree of

variation maintained within each neutral set, with low numbers of identical geno-

types present. The number of identical genotypes representing the global optimum

varying between 2 and 4, illustrating the impact of the M : 1 representation on the

population. Overall, the results indicate that the representation, implicitly maintains

useful building blocks within the population, which promotes good strings and assist

in improving the adaptability of the MGA. What this translates to is a situation

where the variation in the population contains genotypes which are close to one an-

other in terms of the phenotypes they represent rather than their genetic makeup. To

summarise, the Figures show that the neutral networks are constructed by combining

identical phenotypic structures as reported by Reidys et al. [150] and illustrate that

the most prominent neutral networks have a high degree of connectivity and as argued

by Shipman [167], neutrality is advantageous where neutral networks are distributed

over the search space with a high degree of connectivity between them. These re-

sults also align with research into random walks on graphs [124, 144] illustrating that
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nodes within a network with the highest connectivity tend to be visited most often

[11]. Thereby allowing the prediction that search within a neutral network will not be

a pure random drift, instead it generally has a bias and concentrates on individuals of

the network where connectivity is highest [11]. The results shown appear consistent

with this as high levels of connectivity as rewarded with frequent visits, as shown in

Figures 8.13 and 8.14.

8.5.3 Selection Mechanisms

Roulette Wheel Selection

Roulette Wheel Selection offers each individual a roulette wheel slot in proportion

to the fitness of the individual. This results in the creation of a biased roulette

wheel which proportionally favours the fittest individuals in the population. Figure

8.15 illustrates both the on-line and off-line performances for the SGA using roulette

wheel selection and MGA. The SGA locates the global optimum early in the search

but fails after the environment changes and remains trapped on the local optimum,

shown by the off-line performance. Roulette wheel selection is highly noisy and assists

in the removal of diversity from the population. Comparing the on-line results of both

algorithms we can see that the MGA maintains a greater degree of diversity within

the population. The diversity maintained by the MGA contains alleles of equal fitness

which assists in diversity preservation as alleles of different fitness selection pressure

lead to fast convergence [71] and small population selection schemes are subject to

the vagaries of genetic drift [75].
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Figure 8.15: SGA (Roulette Wheel) & MGA On-line/Off-line

Tournament Selection

A Tournament selection mechanism randomly chooses a predefined number of

individuals from the population, who in turn compete amongst one another and the

fittest individual goes forward for crossover. Selection pressure can be adjusted by

altering the tournament size. A large tournament reduces the probability of weak

individuals being selected.
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Figure 8.16 shows the success of the MGA in locating the global optimum and the

maintenance of useful diversity within the population. The SGA locates the global

optimum before the landscape change but cannot escape from the local optimum after

the environment changes.

Ranking Selection

With Ranking Selection the population are ranked according to fitness value. In-

dividuals are then assigned an offspring count as a function of their rank. A drawback

of this method is the uncoupling of the fitness function from the underlying objec-

tive function [67]. Figure 8.17 compares the performance of an SGA incorporating a

ranking selection mechanism.
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Figure 8.17: SGA (Ranking) & MGA On-line/Off-line

The results indicate an element of randomness in the use of ranking selection,

illustrated by the SGA on-line performance, which shows a large variance within

the population. Again the MGA locates the global optimum before and after the

landscape change. Although the SGA locates the global optimum both before and
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after the environment change it also loses it, due mainly to the degree of randomness

present as a result of ranking selection.

Figure 8.18 outlines the degree of convergnece within the MGA population and

the SGA population using Roulette Wheel, Ranking and Tournament selection mech-

anisms. The results indicate that using Tournament selection resulted in the SGA

population converging very quickly (Generation 5). Roulette Wheel selection had

similar results (Generation 9). Ranking selection produced very different results and

maintained a degree of variation within the population. However, the variation main-

tained was based on randomness and was not useful, illustrated by the search con-

tinuously moving off the global optimum. The MGA (using Tournament selection),

produced the best performance by maintaining useful variation both at genotypic and

phenotypic level.
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8.5.4 Selection Noise

As outlined by De Jong [43], the variance of selection is one of the main contrib-

utors to the idea of convergence. In order to examine selection variance or selection

noise, we compare a number of selection mechanisms designed to reduce selection

noise, namely Stochastic Remainder Selection (SRS) and Stochastic Universal Selec-

tion (SUS). With Stochastic Remainder Selection, the fitness of an individual fi is

divided by the average fitness of the population f̄ . For each string i where fi/f̄ is

greater than 1.0, the integer part of the number defines the number of copies of the

individual are put forward for crossover. For example an individual with a fitness

value of 1.45, places one copy forward for crossover and then has a 0.45 chance of

putting a second copy forward.

Stochastic Universal Selection on the other hand, is optimal with respect to effi-

ciency, bias (that is, the distance from the RWS in relation to expected value) and

the spread (range of possible individuals put forward for crossover) [9]. SUS simulates

a roulette wheel similar to RWS. However, while RWS spins the wheel n times (n =

population size), SUS spins the wheel once, using n uniformly spaced pointers at the

edge of the wheel. SUS has zero bias, is very efficient and minimises the spread and

is regarded as the lowest noise selection scheme.

Figure 8.19 indicates that the SGA (with SRS and SUS individually included),

located the local optimum in the initial population, (see the off-line performances)

due in part to the level of diversity (illustrated by the SGA on-line performance).

However, due to the stochastic nature of the selection mechanisms, the search gets

drawn towards the deceptive attractor and as the population converges prematurely
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Figure 8.19: Selection Noise On-line/Off-line

as the search continues and diversity is quickly eliminated from the population. Once

the landscape changes, because the population, for both the SRS and SUS SGAs, were

trapped on the deceptive local optimum, they automatically located to new global

optimum and remained there for the duration of the search. The MGA on the other

hand located the global optimum both before and after the landscape change.

Selection P-Value Results

Off-Line SRS SUS MGA
SRS − 0.04131 0.09138
SUS 0.04131 − 0.4005
On-Line
SRS − 0.2732 < 2.2e−16

SUS 0.2732 − < 2.2e−16

Table 8.1: Off-Line & On-Line Selection p-values

The statistical analysis of the results between the performances of the MGA and

the SGA are shown in Table 8.1 and indicate that the off-line and on-line performances

of SRS and SUS are quite similar to one-another. Comparing the MGA’s off-line
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results to those of the SRS SGA, shows a less significant result than that of the off-

line MGA and SUS SGA. The on-line performance of the MGA differs significantly

from both of the SGAs. Figure 8.20, illustrates the rate of convergence within the

population and shows both the SGA using SRS and the SGA using SUS, converging

quickly. The MGA maintains a higher degree of diversity, both at a phenotypic and

genotypic level which assists in successfully locating the global optimum, both before

and after the landscape change, as the level of diversity maintained allows the search

to escape from the local optimum.
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Figure 8.20: Selection Noise Convergence Rate

8.5.5 Selection Pressure

In a small population GA, under normal circumstances it is common to have a num-

ber of extraordinary individuals in a population made up primarily of mediocre in-

dividuals. With selection, the extraordinary individuals will begin to dominate the

population quite quickly and premature convergence will begin to take hold. Even

if there is significant diversity within a population, late in a run, the population’s
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average fitness (on-line) may be close to the population’s best fitness (off-line). This

leads to a situation where the search for improvement becomes a random-walk among

the mediocre [67].

Scaling Techniques

Fitness scaling has been used to overcome this problem. We now examine fitness

scaling diversifying techniques aimed at reducing the selection pressure within the

population:

• Linear scaling adjusts the fitness values of all individuals within the population,

such that the fittest individual receives a fixed number of expected offspring

and therefore prevents it from reproducing too frequently. The fitness function

f
′

i = axfi + b is used where a and b are normally selected so to allow the

average individual receive, on average, one offspring copy, and the best receives

the specified number of copies (normally two). This method may return a

negative fitness value.

• Window scaling, fitness is scaled by subtracting from the raw fitness, the lowest

fitness of any individual in the past number of scaling window generations. The

fitness function is f
′

i = fi − fw, where w is the window size and is typically

somewhere between 2 and 10 and fw is the worst value observed in the w most

recent generations.

• Sigma Truncation avoids returning negative fitness values for individuals within

the population and incorporates problem dependant information into the scaling

mechanism. The fitness of an individual fi
′

i is calculated as follows: f
′

i =
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fi− (f̄ −cxσ), where c is a small integer value between 1 and 5, f̄ is the average

raw fitness and σ is the population standard deviation. Negative values for f

are avoided as any result f < 0 is set to zero. Individuals where fi < c standard

deviation from the average fitness value are not selected.

• Boltzmann tournament selection procedure is derived and implemented to give

stable distributions within a population. It also creates another niching mech-

anism for forming and sizing stable subpopulations of individuals according to

differences among them, if the cooling process is not taken to the limit. Boltz-

mann scaling is expressed as f
′

= efk/T and selection pressure is low when the

control parameter T is high.
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Figure 8.21: Selection Pressure On-line/Off-line

The results of the scaling experiments are illustrated in Figure 8.21 and Table

8.2. These results indicate that the SGA using various scaling techniques, fails to

maintain enough diversity within the population to avoid premature convergence.

The statistical results indicate that differences between the various scaling methods,
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for these experiments, are minimal. The most significant results are between the

MGA and the SGA using each of the scaling mechanisms.

Scaling Comparison

Off-Line Linear Window Sigma T. Boltzmann MGA
Linear − 1 0.5807 0.5716 < 2.2e−16

Window 1 − 0.5807 0.5716 < 2.2e−16

Sigma T. 0.5807 0.5807 − 1 < 2.2e−16

Boltzmann 0.5716 0.5716 1 − < 2.2e−16

On-Line
Linear − 0.9319 0.1071 0.6711 < 2.2e−16

Window 0.9319 − 0.04809 0.9433 < 2.2e−16

Sigma T. 0.1071 0.04809 − 0.1353 < 2.2e−16

Boltzmann 0.6711 0.9433 0.1353 − < 2.2e−16

Table 8.2: Off-Line & On-Line Scaling p-values

Figure 8.22, gives an overview of the rate of convergence associated with the SGA

(incorporating scaling mechanisms) and the MGA.
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Figure 8.22: Selection Pressure Convergence Rate

The graph illustrates that Linear, Window, Sigma Truncation and Boltzmann

SGAs loose diversity very quickly in the search, which results in the failure of the
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SGA to adapt after the landscape changes. The MGA implicitly maintains a level

of diversity within the population which assists in adapting and locating the global

optimum before and after the landscape change.

Niching Techniques

Niching can be defined as an approach which encourages a number of distinct

groups of genotypes to develop and remain in the population, with reduced pressure

from the GA to converge towards a single type of genotype. Crowding involves a form

of niching of the population. The theory behind Crowding is that offspring will have

a tendency to replace individuals which are similar [128]. By doing this more often

individuals of a similar genotype arise in the population, which increases the chances

that their offspring will replace one of them rather than a dissimilar individual. With

Crowding, as implemented in this dissertation, before crossover or mutation, normal

fitness weighted selection is used to select members for the next generation. Crossover

then takes place on individuals selected randomly from this set.

After individuals are selected for crossover, the offspring are calculated as usual.

For each offspring, crowding factor, in this case 2, members of the survivors are se-

lected randomly and the Hamming distance of each genotype from the offspring is

calculated for 2 individuals. The offspring the replaces whichever survivor is nearest

in Hamming distance. Incest reduction is used in conjunction with Crowding and

introduces a mechanism to reduce the percentage of crossover between similar geno-

types. After being selected, pairs are then selected for crossover by choosing the first

parent at random from the list of selected individuals, then choosing a pre-defined
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(incest-reduction) number of possible candidates for the other parent randomly. The

Hamming distance of each candidate from the first parent and the one with the great-

est Hamming distance is selected for crossover.
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Figure 8.23: Niching On-line/Off-line

The results of the SGA performance with Crowding and Incest reduction are

shown in Figure 8.23. The results indicate that the performance of the SGA with

Crowding are very similar to those of the SGA incorporating Incest reduction (off-line

p-value = 0.03351 and the on-line p-value = 0.1663). Both niching techniques fail the

escape the local optimum. The MGA results differ, in that the diversity maintained

within the population allows the search escape the deceptive trap. Comparing the

MGA off-line and on-line results statistically against both of the niching techniques,

indicated a p-value < 2.2e−16. In relation to the rate of convergence. Unlike the

MGA, the niching techniques outlined, lose diversity early in the search (see Figure

8.24), making it difficult for the SGA to adapt and escape the local optimum when

the environment changed.
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Figure 8.24: Niching Techniques Convergence Rate

8.5.6 Operator Disruption

For the operator disruption experiments, we increased the rate of Pc and Pm (see

Figures 8.25 and 8.26 respectively). Examining the results of increasing the rate of

crossover to 0.90, whilst maintaining mutation at 1/l, the SGA located the global

optimum early in the search but failed to adapt once the landscape changed.
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Figure 8.25: Operator Disruption (Crossover) On-line/Off-line

The results of increasing the rate of mutation to 0.50, while maintaining crossover
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Figure 8.26: Operator Disruption (Mutation) On-line/Off-line

at a rate of 0.7, illustrate that the search is being directed by randomness, with

the SGA constantly moving to and from the global optimum, shown by the off-line

performance. The result also shown a very large degree of variation in the on-line

performance. These results appear to indicate that there is too much exploitation in

the search for this particular landscape.

The increased crossover results, both off-line and on-line were significantly different

from the MGA results, off-line p-value< 2.2e−16 and on-line p-value = 0.0003238. One

possible reason for this is that higher rates of crossover for this particular problem,

result in the balance between exploration and exploitation being negatively effected.

The Mutation results differed in comparison with an off-line p-value 0f 0.0003238 and

on-line p-value < 2.2e−16. The mutation off-line results indicate that increased mu-

tation rates are statistically closer to the MGA results, however as the on-line results

indicate, the search was driven by randomness and failed to produce good strings,

meaning the diversity maintained wasn’t useful in terms of a search algorithm.
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Figure 8.27: Operator Disruption Convergence Rate

Regarding to the maintenance of variation within the population, Figure 8.27

outlines the impact of operator disruption. Increasing crossover failed to maintain

diversity within the population, which converged quickly. The mutation experiment

increased the level of diversity within the population, but as mentioned above, the

search was directed by randomness. This random diversity failed to assist in the

search, unlike the diversity maintained by the MGA.

8.6 Chapter Summary

The aim of this chapter was to examine the population trajectory and the impact

on variation and variability of the proposed neutrality in the primary structure of

a GA, it also examines the effect on heterogeneity of the proposed representation.

The chapter outlined Test 6, which graphically illustrated the population trajectory

and showed visually the variation and variability associated with the inclusion of a

modular, fixed non-trivial mapping. The experiments in Test 6 were designed to test
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the hypothesis: H10 A modular, fixed non-trivial genotype-phenotype mapping, which

introduces neutrality into the primary structure of a GA, alters the evolutionary tra-

jectory and is beneficial over a fully deceptive changing landscape. The chapter also

discussed Test 7, examining heterogeneity and visually represents the evolution of

neutral networks,comparing the variation created by the neutral mapping with tra-

ditional diversification mechanisms. Test 7 was created to test the hypothesis: H6

A modular, fixed non-trivial genotype-phenotype mapping, which introduces neutral-

ity into the primary structure of a GA, maintains heterogeneity and is beneficial in

promoting exploration over a fully deceptive changing landscape.

The Test 6 experiments examined the impact of the proposed neutrality on pop-

ulation evolution, variation and variability. The test showed visually, the impact of

the representation on variation and variability at various stages of the evolutionary

trajectory, with results indicating that over the changing deceptive landscape the

MGA was able to escape being trapped on the local optima, through it’s ability to

maintain variation and it’s increased phenotypic variability. The results also showed

graphically the impact on genotypic variation and phenotypic variation, indicating

how the MGA maintains a greater degree of genotypic variation and to a lesser extend

an increase in phenotypic variation. The tests compared graphically, the connectivity

of the SGA and the MGA, and showed the increased connectivity associated with

Missense mutation, illustrating the increase in phenotypic variability. The results

obtained from Test 6 indicated that the proposed representation, when compared

with that of a SGA, increased variation and variability, which altered the evolution-

ary trajectory which proved beneficial over a fully deceptive landscape. The findings
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achieved show that the stated hypothesis H10 is supported.

Test 7 outlined the various neutral networks present in the MGA population and

also showed the genotypic neighbourhoods, showing that the neighbourhoods are not

randomly created and maintained good solutions within the population. Test 7 ex-

amined the impact of neutrality on population heterogeneity by comparing the MGA

to a series of SGA’s each with a different mechanism to prevent the premature loss of

good solutions and sub-solutions. The approaches used by the SGA included various

selection mechanisms; selection noise approaches; selection pressure techniques and

operator disruption. The selection mechanisms experiments included: Roulette Wheel

selection; Tournament selection and Ranking selection, with results showing the vari-

ation within the MGA population assists in searching deceptive changing landscapes.

The Selection noise experiments included Stochastic Remainder Selection, Stochastic

Universal Selection, with results indicating the variation maintained by the MGA

outperforming the traditional selection mechanisms used by the SGA over deceptive

changing landscapes. Finally, the selection pressure experiments included various

scaling techniques and a number of Niching techniques. Results indicated that the

Heterogeneity created by the MGA representation outperformed the scaling and nich-

ing techniques over the fully deceptive changing landscape. The results obtained from

Test 7 indicate that the stated hypothesis H6 is supported.

From the results presented, neutrality, while increasing the genotype space without

increasing the phenotype space, offers a number of potentially useful characteristics

for GAs. Results indicate that by incorporation the proposed neutrality, genetic drift

slows allowing a GA to maintain additional, highly fit, genetic material within the
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population, as the mutation operator produces both silent and adaptive mutations,

thereby creating neutral networks of different, but related genotypes. Through an

implementation of Neutral theory the MGA implicitly maintains genetic variation

within the population through selection and the slowing of genetic drift, which impacts

on gene flow and provides additional searching capacity by increasing variability. The

proposed MGA mapping provides effective pressure which maintains useful diversity

within the population, enabling crossover to combine this diversity with other building

blocks.

The findings presented from both Test 6 and Test 7 show that the neutral networks

are constructed by combining identical phenotypic structures as reported by Reidys

et al. [150] indicating that the most prominent neutral networks have a high degree of

connectivity. The results concur also with Shipman [167], who reported that neutral-

ity is advantageous where neutral networks are distributed over the search space with

a high degree of connectivity between them. Findings also compare with Nimwegen

et al. [143] who showed that by evolving a population through neutral networks, mi-

grating individuals remain highly connected, resulting in phenotypes which are quite

resilient against mutation.

These findings suggest a similarity to work by Correia [35], who argues that there

are synonymously redundant representations that allow connectivity to be increased

between phenotypes, when compared to non-redundant representations. Overall the

results presented for Test 6 indicate that by changing the primary structure, the MGA

possesses the ability to increase both variation and variability, as a direct result of

the presence of neutrality in the genotype-phenotype map, due to the inclusion of
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an implementation of transcription, translation and dynamic activation. The results

show the influence of a non-trivial neutral representation, where different genotypes

in a neutral set allow for different phenotypic distributions [176, 183].

From the results presented, neutrality, while increasing the genotype space without

increasing the phenotype space, offers a number of potentially useful characteristics

for GAs. Results indicate that by incorporation the proposed neutrality, genetic drift

slows allowing a GA to maintain additional, highly fit, genetic material within the

population, as the mutation operator produces both silent and adaptive mutations,

thereby creating neutral networks of different, but related genotypes. Through an

implementation of Neutral theory the MGA implicitly maintains genetic variation

within the population through selection and genetic drift, which impacts on gene

flow and provides additional searching capacity by increasing variability. The next

and final chapter, Chapter 9 discusses the overall findings in relation to previous

theory and provides a summary of the conclusions.



Chapter 9

Discussion & Conclusion

9.1 Introduction

Evolution can be viewed as operating on the genotype space while exploring the

search space and through recombination and mutation, defines the search space’s

variational topology. When discussing variational topology we need to examine both

genotypic variational topology and phenotypic variational topology. Nature uses a

complex genotype-phenotype map to advance a relatively simple genotype space vari-

ational topology to an extremely complex phenotypic variational topology.

Chapter 1 motivates the dissertation and outlines biological concepts such as Neu-

tral theory, Modularity, Variation and Variability, intermingling these concepts with

GAs to identify a series of open research questions:

• How does the introduction of neutrality, through the use of a biologically in-

spired genotype-phenotype mapping, impact on a population’s evolutionary tra-

jectory over static and dynamic fully deceptive landscapes?

211
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• How, over landscapes of varying degrees of hardness, does the inclusion of neu-

trality into the genotype-phenotype map of a GA influence genotypic and phe-

notypic variation?

• How does the introduction of a neutral representation into the primary structure

of a GA impact on heterogeneity over a fully deceptive changing landscape?

• How does altering the granularity of neutrality, which introduces varying degrees

of neutral drift, impact the phenotypic variability of a genetic algorithm with a

many-to-one genotype-phenotype map?

• How does the introduction of neutrality, through the use of a biologically in-

spired genotype-phenotype mapping impact on the evolutionary path and phe-

notypic variability over a fully deceptive changing landscape?

The open research questions led to the formulation of a number of hypotheses and

defined the primary aims of the dissertation. The hypotheses developed were listed

under 3 headings, efficacy, variation and variability, with a search strategy being

viewed as beneficial if optimisation is achieved in fewer generations. The hypotheses

tested in the dissertation were as follows:

• MGA Efficacy Hypotheses

– H1: Including a biologically inspired, multi-layered, many-to-one genotype-

phenotype map into a GA, benefits searching a fully deceptive changing

landscapes
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– H2: The inclusion of a biologically inspired, modular, fixed non-trivial,

multi-layered genotype-phenotype map into a GA, can perform as robustly

as a standard GA in optimising De Jong’s test suite.

• MGA Variation Hypotheses

– H3: Diversity, implicitly maintained by a many-to-one, genotype-phenotype

mapping of a GA, implemented by an interpretation of the biological pro-

cesses of Transcription and Translation, is beneficial in searching noisy

and dynamic landscapes.

– H4: Introducing neutrality into the representation of a GA, through a mod-

ular, fixed non-trivial mapping, is beneficial in searching static landscapes

with varying levels of difficulty.

– H5: Including a modular, fixed non-trivial genotype-phenotype map which

introduces a more flexible phenotypic structure and a higher degree of phe-

notypic variation through the use of neutrality, benefits the optimisation of

solutions over dynamic landscape problems.

– H6: A modular, fixed non-trivial genotype-phenotype mapping, which in-

troduces neutrality into the primary structure of a GA, maintains hetero-

geneity and is beneficial in promoting exploration over a fully deceptive

changing landscape.

• MGA Variability Hypotheses

– H7: Altering the level of granularity alters the size of the Translation table

and impacts on the search over more difficult dynamic landscapes.
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– H8: The benefit of including a Transcription phase in a many-to-one,

genotype-phenotype mapping, increases as the level of problem difficulty

increases over more difficult dynamic landscapes.

– H9: An interpretation of Missense mutation, included within the layering

of a biologically inspired, multi-layered genotype-phenotype mapping GA,

assists searching more difficult dynamic landscapes.

– H10: A modular, fixed non-trivial genotype-phenotype mapping, which in-

troduces neutrality into the primary structure of a GA, alters the evolution-

ary trajectory and is beneficial over a fully deceptive changing landscape.

Chapter 1 identified the primary aim of this dissertation as the combination of

Darwinism and Neutral theory, through the development of a biologically inspired

multi-layered genotype-phenotype map, incorporating the principle of modularity,

into a GA and to examine the proposed representation’s impact on variation and

variability. The motivation derived from the idea of creating a representation which

was biologically inspired and involved incorporated aspects of Darwinian survival

of the fittest, Neutral theory and Modularity into the primary structure of a GA.

As concepts observed in nature often prove useful to GAs when implemented at an

abstract level, transcription, translation and dynamic activation were used to produce

non-trivial neutrality in the representation and amissense mutation operator was also

introduced, functioning within the layered mapping. The contribution is to develop

a novel way to achieve a balance between exploration and exploitation by creating a

genotype-phenotype mapping which provides effective pressure to preserve diversity

allowing the continued exchange of building blocks, thereby permitting sustained
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exploration. A secondary contribution was the development of a variation operator

to operate within the layers of the mapping.

By having a many-to-one genotype-phenotype map, the idea of phenotypically

neutral neighbours [169] was introduced, which potentially, allow a passage through

the genotype space without losing fitness when trapped. As the mapping is designed

to maintain variation and increase phenotypic variability, the MGA adopts a modu-

lar approach by minimising pleiotropic interaction between characters operating on

different functions having a separate representation of character complexes, for dis-

tinct functions [192]. The MGA representation adopts a haploid primary structure,

thereby allowing standard variational operators to function in a problem independent

manner and offers the ability to tune the level of neutrality present, thereby altering

the variational topology.

Chapter 2 introduces GA fundamentals and describes how GAs work, outlining

concepts such as; Schemata, the Schema Theorem, the Building Block hypothesis,

search spaces and fitness landscape. The chapter outlines a number of landscapes

chosen to evaluate the proposed representation, including static and dynamic prob-

lems, unimodal and multimodal problems, deceptive and non-deceptive problems.

Chapter 3 discusses neutrality, referencing past literature and examines Neutral the-

ory and neutrality from a biological prospective. The chapter then expands the

discussion to the use of synthetic neutrality in artificial systems, focusing on GAs

and illustrating two common approaches to introducing neutrality into a GA; fit-

ness landscapes and genotype-phenotype mappings. The introduction of neutrality

through genotype-phenotype mapping is the method adopted in this dissertation.
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Chapter 4 describes the design of the proposed representation, using worked exam-

ples to illustrate the various mappings of the MGA. The chapter outlines the modular

design of the representation and explains how a basic interpretation of the principals

of transcription and translation are implemented, producing a layered-mapping and

describing the implementation of missense mutation and its associated mappings. The

change in variability is also illustrated as the representation is designed to increase

connectivity. Finally, a worked example of the creation of a 6-3-1 MGA representation

is included, followed by an 8-4-1 MGA representation example, illustrating a number

of scenarios involving missense mutation.

9.2 Discussion

A number of tests were designed to examine the hypotheses emerging from the

research questions. Chapter 5 begins this process by examining the efficacy of the

MGA. Chapter 6 continues and explores the variation associated with the MGA over

a number of landscapes, while Chapter 7 examines the variability and accessibility

of phenotypes from genotypes by altering the arity of the representation. Chapter 8

concludes the experiments by examining the impact of the proposed representation

in relation to evolutionary trajectory and heterogeneity.
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9.2.1 Efficacy Results

Test 1 & Test 2

Beginning with Chapter 5, Test 1 examines hypothesis H1: Including a biologi-

cally inspired, multi-layered, many-to-one genotype-phenotype map into a GA, benefits

searching a fully deceptive changing landscapes. The results of the Test 1 experiments

indicate that the introduction of a flexible phenotypic variational topology enhances

the ability of a genetic algorithm to search more complex fully deceptive landscapes.

By introducing a more flexible genotypic-phenotypic relationship through the use of

a series of mappings, loosely based on the biological processes of transcription and

translation, the MGA repeatedly optimised both the fixed deceptive landscape and

the changing deceptive landscape. The experiments moved from a basic 3-bit fully

deceptive problem to a loosely ordered 10 3-bit fully deceptive problem and finally

onto a 10 3-bit fully deceptive changing landscape problem.

Overall the results of Test 1 found that there was little benefit, if any, in intro-

ducing neutrality for the 3-bit deceptive problem, mainly due to the relative ease of

the problem, as reported by Collins [34]. These results are also in line with Beaudoin

et al. [18], who found that as the level of difficulty increased so too did the benefit

of including neutrality and Doerr et al. [49], who found that neutrality was possibly

beneficial over more difficult deceptive landscapes with multiple local optima. The

MGA representation appears to be structured in a way that improves the likelihood of

sampling the optimum [62], combined with the dampening of the destructive effects

of mutation, as reported by Wagner [191] and Yu & Miller [207], with results show-

ing that the proposed multi-layered genotype-phenotype map is effective in solving
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the deceptive problems presented. Results also indicated that the benefits associated

with the multi-layered genotype-phenotype mapping increases as the level of problem

difficulty increases. The experiment results and the statistical analysis indicate that

the stated hypothesis (H1) is supported.

The experiments carried out under Test 2 were designed to test the hypothesis

H2: The inclusion of a biologically inspired, modular, fixed non-trivial, multi-layered

genotype-phenotype map into a GA, can perform as robustly as a standard GA in op-

timising De Jong’s test suite. Results show that for the characteristics presented by

the Sphere function, the Rosenbrock function, the Step function and the Quadratic

function, there appears to be little benefit in introducing neutrality. However, this

is not the case for the Shekel’s Foxholes experiments, where the introduction of neu-

trality through the genotype-phenotype mapping has been shown to be beneficial. A

possible reason for this is that the neutrality introduced through the multi-layered

mapping, reduces the impact of operators such as mutation and crossover, slows

genetic drift and assists in avoiding getting stuck in a local optima as the search

progresses [191, 207].

The inclusion of an adaptation of the biological concepts of transcription and

translation into a GA, introduces neutrality into the genotype-phenotype mapping.

The results of the Test 2 experiments over the modified De Jong test suite, indi-

cate classes of problems which could possibly benefit from the inclusion of a multi-

layered genotype-phenotype map. The results appear to suggest that the problems

most likely to benefit would contain a combination of characteristics such as, multi-

dimensionality, multi-modality, non-separable, continuous and deterministic. It also



Chapter 9: Discussion & Conclusion 219

seems, from the results presented that the MGA is robust, which is a similar finding

to Wilke et al. [201] who argued that neutrality provides robustness. The results

indicate that the stated hypothesis (H2) is supported and that the MGA is as robust

and capable as a SGA over the test suit.

The results of Tests 1 and 2 have established the efficacy of the MGA over the

problem landscapes chosen. Tests 1 and 2 were developed to test hypothesis H1

and H2 which were created from the research question, How does the introduction

of neutrality, through the use of a biologically inspired genotype-phenotype mapping,

impact on a population’s evolutionary trajectory over static and dynamic fully decep-

tive landscapes? Results from the experiments supported both hypotheses, indicating

that neutrality dampens the effect of variation operators and genetic drift alters as

neutrality is introduced, impacting on the evolutionary trajectory. Findings from

Tests 1 and 2 appear similar to Banzhaf [10] and Elgin [54], where neutrality in the

representation assisted in maintaining diversity and random drift caused by neutral

variants increases population diversity by expanding the population distribution so as

to help find an escape route from local traps. The findings also concur with Ebner et

al. [51, 52] who indicated that neutral networks assist in maintaining diversity in the

population, which may be advantageous in a changing environment, and Beaudoin

[18] who found that by introducing neutrality easier problems became more difficult

and more difficult problems became easier. One reason for the easier problems be-

ing more difficult relates to the additional computational overhead associated with

neutrality [63].
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9.2.2 Variation Results

Test 3 & Test 4

As the findings from Tests 1 and 2 indicated that maintaining variation is an

important characteristic of the proposed neutral representation, the next set of ex-

periments, Tests 3 and 4 were designed to examine variation in more details. Test

3 is designed to test hypothesis H3: Diversity, implicitly maintained by a many-to-

one, genotype-phenotype mapping of a GA, implemented by an interpretation of the

biological processes of Transcription and Translation, is beneficial in searching noisy

and dynamic landscapes. The findings of Test 3 illustrated that variation takes place

both at a genotypic level and to much lesser extent, at the phenotypic level, with

results indicating that as the levels of problem difficulty increase over fully deceptive

noisy and changing landscapes, the benefit of including the proposed representation

in searching the search space also increase. The results suggest that the implicit

maintenance of variation in the population is one of the reasons for the MGA’s suc-

cess, as variation combined with the multi-layered representation assists in inducing

phenotypic variability.

Test 3 experiment results indicated that as problem difficulty increased, so too

did the benefit of including neutrality and that easier problems seemed harder and

harder problems seemed easier, in a similar manner to Beaudoin [18], with additional

computational overhead negatively effecting the easier problems [63]. The results

also found that the maintenance of diversity within the population, caused by the

dampening of impact from variational operators slowed genetic flow (similar to Yu

& Miller [205, 206]) and was beneficial in searching the search space, particularly
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over changing landscapes as found by Ebner et al. [51, 52]. The representation

presented dictates the effect on genetic flow, which regulates the level of variation

and appears to vary according to level of difficulty present in the landscape. In many

ways the findings from the experiments are similar to biological studies carried out

by King and Dukes [113] who argue that much of the evolution of proteins is down

to neutral mutations and genetic drift. The findings suggest that as the level of

difficulty increases, the inclusion of neutrality in the representation, by implementing

an interpretation of the biological process of transcription and translation, benefits

in searching noisy and dynamic landscapes. The Test 3 experiment results support

the stated hypothesis (H3).

Experiments conducted for the first part of Test 4 were created to test hypothesis

H4: Introducing neutrality into the representation of a GA, through a modular, fixed

non-trivial mapping, is beneficial in searching static landscapes with varying levels of

difficulty. With results indicating that over the static unimodal problem, the neutral

mapping was beneficial in searching the landscape as the level of difficulty increased

through changes in the dimensionality and that the benefits on including neutrality

increased as the level of difficulty increased. The results of the static unimodal exper-

iments illustrated that as problem difficulty increased, the performance of the neutral

representation contained in the MGA proved beneficial in searching the search space

and illustrated the MGA’s robustness as outlined by Wilke et al. [201]. The findings

in relation to variation were similar to past research, in that silent mutation is neutral

and does not affect the fitness value, but does maintain diversity in the population

and this can assist exploration. These findings were similar to those presented by Yu
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& Miller [206].

The second part of Test 4 uses a dynamic unimodal problem to test the hypothesis

H5: Including a modular, fixed non-trivial genotype-phenotype map which introduces a

more flexible phenotypic structure and a higher degree of phenotypic variation through

the use of neutrality, benefits the optimization of solutions over dynamic landscape

problems. The results from the second part of Test 4 showed that the dynamic

unimodal experiments illustrated the adaptability and robustness of the MGA in

the face of a changing landscape, similar to Ebner et al. [51, 52]. The findings

highlighted that the benefits associated with the type of neutrality introduced by the

layered mapping, increase as the level of difficulty increases and are more pronounced

over a changing landscape. Positive results from both parts of Test 4 support both

hypotheses (H4 and H5).

The hypotheses H3, H4 and H5 were developed from the research question How,

over landscapes of varying degrees of hardness, does the inclusion of neutrality into

the genotype-phenotype map of a GA influence genotypic and phenotypic variation?.

Results from the experiments carried out, illustrated that as the level of difficulty

increased over the given landscapes the levels of variation maintained assisted in

searching the search space. One reason for this is that, the neutral representation,

by maintaining variation within the population, primarily at a genotypic level and

to a lesser extent at a phenotypic level, allows neutral networks to hold a number of

closely related genotypes which, through the layered-mapping, help induce phenotypic

variability. The proposed representation creates neutrality through implementations

of the biological processes of transcription and translation. These processes had been
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applied in artificial systems (i.e. Ashlock [5] and Banzhaf [10]), however the proposed

mapping differed significantly as modularity is employed in the way the layers are

implemented.

Test 7

Another area related to variability is heterogeneity and is the subject of Test 7,

which was created to test the hypothesis H6: A modular, fixed non-trivial genotype-

phenotype mapping, which introduces neutrality into the primary structure of a GA,

maintains heterogeneity and is beneficial in avoiding premature convergence over a

fully deceptive changing landscape. Test 7 outlined the various neutral networks

present in the MGA population and also showed the genotypic neighbourhoods and

their proximity to one another in terms of fitness plateaus. Test 7 examined the

impact of neutrality on population heterogeneity by comparing the MGA to a series

of SGA’s each with a different mechanism to prevent the premature loss of good

solutions and sub-solutions.

Examining the search space as argued by Toussaint [183] allows an insight to be

developed into how evolution can adapt the search on the phenotypic search space

and results indicate that the variation in the population contains genotypes which

are close to one another in terms of the phenotypes they represent rather than their

genetic makeup. The findings show that the neutral networks are constructed by

combining identical phenotypic structures as reported by Reidys et al. [150] and il-

lustrate that the most prominent neutral networks have a high degree of connectivity.

The results also concur with findings by Shipman [167], who argued that neutrality
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is advantageous where neutral networks are distributed over the search space with

a high degree of connectivity between them. The examination of the population’s

evolutionary trajectory from the phenotype space illustrates that the MGA’s repre-

sentation maintains good solutions and sub-solutions within the population allowing

the processing of good schemata, remembering also the Building Block hypothesis,

which states that the power of a GA lies in being able to find good building blocks

[67], which can be used for continued exploration.

The various diversifying techniques used by the SGA in Test 7, included a num-

ber of selection mechanisms; selection noise approaches; selection pressure techniques

and operator disruption. The selection mechanisms experiments included: Roulette

Wheel selection; Tournament selection and Ranking selection, with results showing

the variation within the MGA’s population assists in searching deceptive changing

landscapes. The Selection noise experiments included Stochastic Remainder Selec-

tion, Stochastic Universal Selection, with results indicating the variation maintained

by the MGA outperforming the traditional selection mechanisms used by the SGA

over deceptive changing landscapes. The results in relation to the neutrality mainte-

nance of diversity are similar to those reported by Yu and Miller [205, 206] and Ebner

et al. [51, 52] in relation to neutrality and changing landscapes.

Finally, the selection pressure experiments included various scaling techniques

and a number of Niching techniques. Again, results indicated that the heterogeneity

created by the genotype-phenotype mapping outperformed the scaling and niching

techniques over the fully deceptive changing landscape. Overall, the heterogeneity

experiment results illustrate that the multi-layered mapping, through neutrality, im-
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pacts in a positive way on heterogeneity by maintaining variation within the popula-

tion, with the neutral network results showing that the representation affects genetic

drift while still promoting highly fit schema in the population. The hypothesis (H6)

emerged from the research question How does the introduction of a neutral representa-

tion into the primary structure of a GA impact on heterogeneity over a fully deceptive

changing landscape? and results of the experiments carried out in Test 7 resulted in

the stated hypothesis (H6) being supported.

9.2.3 Variability Results

Test 5

Test 5 looks at the impact of altering the arity of the MGA, which alters the gran-

ularity of the representation, changing the accessibility of phenotypes from genotypes

and tests hypothesis H7: Altering the level of granularity alters the size of the Trans-

lation table and impacts on the search over more difficult dynamic landscapes. Test

5 also examines the transcription phase of the mapping and test hypothesis H8: The

benefit of including a Transcription phase in a many-to-one, genotype-phenotype map-

ping, increases as the level of problem difficulty increases over more difficult dynamic

landscapes. Finally, Test 5 examines the impact of the missense mutation operator

and tests the hypothesis H9: An interpretation of Missense mutation, included within

the layering of a biologically inspired, multi-layered genotype-phenotype mapping GA,

assists searching more difficult dynamic landscapes.

The results of Test 5 indicate that overall the MGA appears robust over both

static and changing landscapes. By incorporating a modular, fixed non-trivial tun-
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able genotype-phenotype mapping, the MGA offers the ability to tune the granularity

of the representation, which appears beneficial over various landscapes and the perfor-

mance of the MGA varies, depending on the level of granularity in the representation

and the problem difficulty. Over the static OneMax landscapes, the MGA’s off-line

and on-line performances were quite similar to those of the SGA. On reason for this

is that the unimodal OneMax problem, by its nature, is relatively easy for a GA to

solve.

The results illustrated that there was little benefit in including neutrality on uni-

modal landscapes and that easier unimodal problems appeared more difficult and

more difficult unimodal problems became easier, this trend continued as arity in-

creased. These results are consistent with those found by Beaudoin et al. [18] and

that little exploration was required due to the level of problem difficulty associated

with the unimodal landscapes. The results also illustrated that the MGA’s repre-

sentation reduces the impact of variational operators, as reported by Doerr et al.

[49]. Also, as found by Galván-López and Poli [63] the increase in computational

overhead associated with the introduction of neutrality out-weights the introduction

of neutrality on static unimodal landscapes. The results indicated that as the level of

problem difficulty increased over the static unimodal landscape, the number of neutral

networks decreased, which ultimately results in a reduction in overall variability.

However, over the loosely ordered 10 3-bit deceptive problem and particularly over

the more difficult 30 3-bit deceptive problem, the MGA out-performed the SGA. It

should be noted that the 4-2-1 MGA representation which struggled slightly after the

landscape changed, indicating that the adaptability of the MGA decreases when too
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coarse a granularity is adopted. It is interesting to note that the MGA, in terms of

robustness, performed as well as the SGA over the OneMax landscapes. However, over

the deceptive changing landscape experiments the MGA outperformed the SGA, both

on-line and off-line, particularly over the more difficult 30 3-bit deceptive problem.

Overall, with the more challenging dynamic multimodal deceptive problems, the MGA

outperformed the SGA and the performance improved as the level of problem difficulty

increased. It appears that given the level of difficulty associated with the landscape,

the addition of neutrality was beneficial, which again is similar to findings by Beaudoin

et al. [18]. The results over the multimodal deceptive landscape indicated that as

arity increased, the degree of exploration required decreased over the less difficult

problem and increased over the more difficult problem.

These results suggest that the impact of arity differs depending on the level of

problem difficulty. They also suggest that arity impacts on neutral networks, with the

number of neutral networks present increasing as arity increases over more difficult

problems, resulting in increased exploration. These findings may be explained by

biological studies carried out by Huynen [100] which showed with large amounts

of neutrality present in the mapping, neutral paths exist, which allow for smooth

exploration.

The hypotheses tested (H7, H8 & H9) emerged for the research question How

does altering the granularity of neutrality, which introduces varying degrees of neu-

tral drift, impact the phenotypic variability of a genetic algorithm with a many-to-one

genotype-phenotype map?. In relation to altering the size of the translation table,

results indicate that there is an impact on search particularly over the more difficult
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landscapes, so the hypothesis (H7) can be accepted. The experiments on the tran-

scription phase produced interesting results in that over the easier 10 3-bit deceptive

problem, the exclusion of a transcription phase made little or no difference. However

over the more difficult 30 3-bit deceptive problem the MGA struggled without the

transcription phase, suggesting that the mapping provided by transcription benefits

the search strategy, possibly in that it replicates a form of inversion. The results

indicated that the hypothesis (H8) is accepted. Finally, the missense mutation exper-

iments indicated that its presence assisted the search strategy as the optimum was

located with fewer functional evaluations. Therefore, when it was omitted over the

duration of the run the search failed, allowing the hypothesis (H9) to be supported.

Test 6

Test 6 was created to graphically illustrate the impact of multi-layered neutral

mapping on population trajectory, variation and variability and tests the hypothe-

sis H10: A modular, fixed non-trivial genotype-phenotype mapping, which introduces

neutrality into the primary structure of a GA, alters the evolutionary trajectory and

is beneficial over a fully deceptive changing landscape. The hypothesis tested H10

came from the research question How does the introduction of neutrality, through the

use of a biologically inspired genotype-phenotype mapping impact on the evolutionary

path and phenotypic variability over a fully deceptive changing landscape?. The re-

sults showed visually, the impact of the representation on variation and variability

at various stages of the evolutionary trajectory, indicating that over the changing

deceptive landscape the MGA avoided being trapped on the local optima, through
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it’s ability to maintain variation and its increased phenotypic variability. This work

compares favourably with Nimwegen et al. [143] who found that during the evolu-

tion of a population through neutral networks, migrating individuals remain highly

connected, resulting in phenotypes which are quite resilient against mutation. Wag-

ner [191], took a similar view and suggested that neutrality assisted in sheltering a

system from the impact of mutation and argued that new adaptations, provided by

neutrality, can assist the search. The work also compares with that of Wilke et al.

[201], who argued that neutrality provides robustness, with results indicating that

genotypes closely connected by mutation, have high selection rates and that these

genotypes tend to be located on flatter areas of the landscape.

The Test 6 findings show visually an interpretation of Toussaint’s [184] idea of

non-trivial neutrality, where different genotypes in a neutral set allow for different

phenotypic distributions and how evolution can adapt the search on the phenotype

space [183]. Although two genotypes can be considered equivalent if they represent

the same phenotype, however their variational topologies can differ [176]. But ulti-

mately the genotype-phenotype map induces a variational topology on the phenotype

space depending on the topology of the genotype space [183]. The results of Test 6 illus-

trate graphically the variation and variability associated with the MGA. The findings

here suggest that through the neutral representation and dynamic activation, the

representation which is designed to be uniform and increase connectivity, alters the

population distribution due to changes in the evolutionary trajectory, showing that

the performance of the GA can differ even when no individuals are over-represented.

The results of Test 6 indicate that hypothesis H10 is supported.
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To summarise the results of Test 6 which showed graphically, the impact on geno-

typic variation and phenotypic variation, indicating how the MGAmaintains a greater

degree of genotypic variation and to a lesser extent phenotypic variation. The tests

compared graphically, the connectivity of the SGA and the MGA, and showed the in-

creased connectivity associated with the proposed mapping, illustrating the increase

in phenotypic variability. The contribution of this form of mapping lies in its abil-

ity to maintain variation without introducing a random search strategy and increase

variability, thereby allowing the occupation by the population, of a greater number of

fitness plateaus and preventing premature convergence through changing the genetic

flow. By adopting this approach, convergence at a phenotypic level can be achieved,

but genetic diversity is maintained at a genotypic level. Neutral theory [111], would

suggest that where genetic changes spread across a population, changes may or may

not alter the phenotype and are a result of genetic drift.

9.3 Conclusion

Given that a GA search involves a mapping between the genotype and the phe-

notype, a SGA, because of its one-to-one genotype-phenotype mapping, quickly elim-

inates diversity from the population through its selection policy and low mutation

rates. However, variation within the population is a desirable feature as a popula-

tion’s ability to survive often depends on a level of diversity maintained within the

population. Therefore, as phenotypic variation is critical for evolution and the ge-

netic representation of a trait determines the variability of a phenotype rather than

the genetic variation within the population, then because both variation and vari-
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ability are influenced by the genetic representation, the choice of representation is a

critical component of the search strategy.

The proposed redundant representation adopted a modular approach which in-

cluded little pleiotropy, with a separate genetic representation of characters for each

phene so as to improve evolvability through limiting the interference between adap-

tion of characters [192]. By including Modularity and Neutral theory into the genetic

representation the aim is to achieve a balance between exploration and exploitation

by increasing variation and variability within the population, thereby improving the

adaptability of the algorithm. The representation developed incorporates Neutral

theory into a tunable genotype-phenotype mapping through the biological concepts

of transcription and translation.

The results presented, illustrate that through the implementation of Neutral the-

ory, as proposed by Kimura [111], the multi-layered genotype-phenotype mapping

presented allows for a tunable, modular, fixed non-trivial relationship. The incorpo-

ration of Neutral theory into the MGA genotype-phenotype mapping creates a rep-

resentation, which increases connectivity and allows variational operators function in

a problem independent way, maintaining highly fit schemata within the population.

The layered neutral representation, dampens the effect of the variation operators and

alters genetic drift, impacting on variation and variability. Neutral theory suggests

that as changes at a genotypic level may or may not alter the phenotype, neutral net-

works emerge. It is the presence of these neutral networks and the altering of genetic

drift which exerts a great influence on the evolutionary trajectory, thereby accounting

for the MGA’s ability to succeed over more difficult and changing landscapes.
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The primary aim of this dissertation was to combine Darwinian survival of the

fittest [39] with Neutral theory [111] in a tunable, modular, fixed non-trivial GA rep-

resentation, through a basic implementation of the biological processes of translation

and transcription, which allows genetic drift to alter without developing a random

search strategy. The representation was designed to allow operators function correctly

through uniformity and synonymity, and also to include a high degree of locality and

connectivity.

A secondary aim was to introduce variation within the layered architecture through

a novel implementation of missense mutation and to examine it’s impact. The pro-

posed GA representation included neutrality which allows the mutation operator to

produce both silent and adaptive mutations, thereby creating neutral networks of dif-

ferent but related genotypes, which through an interpretation of biological concepts,

maintained variation and increased variability over the chosen test suites. The map-

ping benefitted the search strategy over the more difficult changing landscapes, with

results indicating that the proposed representation altered the evolutionary trajectory

of the population. In general the proposed representation delayed to convergence of

the strategy, altered the evolutionary trajectory and changed the long term behaviour

of the algorithm. Findings presented showed the benefit to the search strategy of in-

cluding a variation operator within the layers of the mapping, with missense mutation

increasing variability, without drifting towards randomness.

To conclude, through the proposed combination of Darwinism and Neutral the-

ory, the MGA, through a biologically inspired multi-layered representation, produced

an effective pressure to maintain useful diversity within the population, allowing that
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diversity to be crossed with other building blocks, thereby permitting sustained explo-

ration. The neutral representation created neutral networks and altered genetic drift,

which impacted on gene flow and changed the evolutionary trajectory by inducing

variability.

9.4 Future Work

Further work emerging from this dissertation includes the following:

• Detailed examination into the self-adaptive nature of a neutral fixed non-trivial

representation and the introduction of self-adaptive operators within the pro-

posed MGA. Much research has been carried out into the use of self adaption

in EA’s, however as pointed out by Toussaint and Igel [185], approaches to self-

adaption in evolutionary algorithms can be viewed as an example of the benefits

of neutrality. As chromosome can have an associated mutation rate and may

be part of the same neutral network, as a result of the presence of neutrality.

This results in a situation where chromosomes in the same neutral network may

have and have different mutation rates and evolution can choose between these

in a self-adaptive way. From a research perspective this is interesting as there

exists a variety of mutation rates or distributions within the population, which

can evolve.

• Further exploration into the use of Dynamic Activation within EAs, which al-

lows the possibility of loci on a genotype, where given a certain context are

functionless (mutation makes no difference) [84], but combined with a value
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elsewhere on the genotype may become important [84]. Combined with this

would be an examination into the efficacy of a basic interpretation of the bio-

logical concepts of exons and introns (Exons can be described as coding regions

which are interpreted by non coding regions, known as introns), and the develop-

ment and examination of a mutation operator based on the biological nonsense

mutation operator, which creates a nonsense codon that does not code for an

amino acid.

• As the genotype-phenotype mapping is central to the representation problem

and determines the evolvability of the phenotype [192], another avenue for re-

search involves the use of numerical values in MGA’s layered representation

rather than characters and an examination of the impact on variation and vari-

ability. This offers a novel approach to the translation phase which impacts

on the accessibility of phenotypes from genotypes and offers the possibility of

further insight into the use of both the transcription process and the translation

process.
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